• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Cortical network for selective attention based on border ownership integration

Research Project

  • PDF
Project/Area Number 17K12704
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Cognitive science
Research InstitutionToho University (2018-2019)
Tokyo Denki University (2017)

Principal Investigator

WAGATSUMA Nobuhiko  東邦大学, 理学部, 講師 (60632958)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywords神経同期 / 神経回路モデル / Border Ownership / 図方向決定 / 視覚的注意 / 視覚情報処理
Outline of Final Research Achievements

The activity of a border ownership selective (BOS) neuron underlies the perception of a figure. Previous work has proposed that this grouping mechanism is implemented by population of grouping (“G”) cells and that these G-cells also serve as “handles” for attention. Experimental studies have investigated correlations between BOS neurons. A previous study showed that modulatory common feedback may underlie the synchrony between BOS neurons with consistent BOS, i.e. when both neurons in the pair respond to the same object. Here, I extended this model to explain synchrony observed between neurons with non-consistent BOS. In my model, the responses of BOS neurons are modulated by the activity of G-cells mediating spatial-attention and object-based attention. The G-cells provide modulatory feedback to BOS neurons via NMDA receptors. Simulation results for the model suggest that the interactions between feedback signals play a critical role to modulate the activities of BOS neurons.

Free Research Field

計算論的神経科学

Academic Significance and Societal Importance of the Research Achievements

サルV2のニューロンが、図方向(Border Ownership, BO)に対して選択性を持つことが知られている(BOS細胞)。最近、皮質において、空間的に離れて配置されたBOS細胞の同期発火が、物体知覚の皮質表現である可能性が示唆された。しかし、空間的に離れて配列されたBOS細胞が同期するための神経回路メカニズムは、生理実験的な検証が困難であり、その詳細も未知であった。本研究が提案する神経回路モデルにより、この問題への解法の示唆が与えられた。この結果は、生物の視覚処理メカニズムの理解だけでなく、コンピュータビジョンアルゴリズムの発展に寄与することが期待される。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi