2018 Fiscal Year Final Research Report
Development of comprehensive regional landscape analysis and scenic route search method using image big data
Project/Area Number |
17K13304
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Tourism Studies
|
Research Institution | Muroran Institute of Technology |
Principal Investigator |
Asada Takumi 室蘭工業大学, 大学院工学研究科, 助教 (50634680)
|
Project Period (FY) |
2017-04-01 – 2019-03-31
|
Keywords | 画像解析 / 観光周遊 / 空間系ビッグデータ / ロードツーリズム / サイクリング / 景観 / SNS |
Outline of Final Research Achievements |
In this study, we conducted an exhaustive regional analysis using big data such as images for widening and revitalizing road tourism. First, we developed a method to evaluate the road landscape and the comfort when riding a bicycle by the image taken by the action camera. In addition, we analyzed the structure of interest and actual visiting patterns at tourist spots in the area by using SNS data and big data on movement and stay of people, and clarified the characteristics of the tourist demand in the target area, and in particular, the Shinkansen The effects were measured by comparing the patterns of movement, stay, and consciousness before and after large social infrastructure changes such as opening a business.
|
Free Research Field |
土木計画学
|
Academic Significance and Societal Importance of the Research Achievements |
ロードツーリズムの広域化は,観光客の周遊の促進,滞在時間の長時間化(地域経済活性化)に期待されている.そして,2020 年の東京オリンピック・パラリンピック開催を考えると,首都圏だけではなく地方部にも海外の関心を向けさせるための喫緊の課題とも言える.本研究では,このような広域ロードツーリズムの活性化に向けて,北海道のような観光先進地域を対象に,それらの観光資源である景観や各スポットの特徴を網羅的に把握し,さらに,潜在的な周遊ルートの抽出を行った.また,それらに関するビッグデータの活用用法および分析手法を示したことから,学術的また社会的な意義は大きいと言える.
|