• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

Trudinger-Moser型臨界非線形楕円型方程式の符号変化解の漸近挙動

Research Project

Project/Area Number 17K14214
Research InstitutionMuroran Institute of Technology

Principal Investigator

内免 大輔  室蘭工業大学, 大学院工学研究科, 准教授 (20783278)

Project Period (FY) 2017-04-01 – 2024-03-31
Keywords集中現象 / 爆発解析 / 非線形楕円型方程式
Outline of Annual Research Achievements

これまでの研究では指数型臨界非線形項を持つ楕円型方程式の球対称符号変化解の集中現象についての解析を進め,種々の結果を得てきた。当該年度の研究でその発展的研究を進めていく中で,劣臨界型の方程式の球対称符号変化解には臨界型とは異なる集中挙動が現れるのではないかという着想を得た。そこで当該年度は主にこのことについて解析を行った。このために,まずは符号変化解の正値部分の集中挙動について,指数型方程式の持つスケーリング則に基づいた爆発解析を行った。結果として,正値部分の集中の形状はLiouville方程式と呼ばれる全空間方程式の古典解により特徴づけられることが分かった。さらに,この特徴づけを用いて,集中のエネルギー,大域的漸近挙動,および爆発(最大値の無限大への発散)のスピードに関する公式を導出することができた。これにより,劣臨界の場合の解の爆発のスピードは臨界の場合のそれとは明確に異なることが分かった。これまでの臨界型についての解析と同様に劣臨界型の方程式においても符号変化解の負の部分の集中挙動の解析には,正の部分の爆発のスピードに関する公式が重要な役割を担うことが期待される。従って,当該年度に得られた結果から,符号変化解の負の部分の集中挙動には臨界型のそれとは定性的あるいは定量的に異なる挙動がみられることが期待される。現在のところ,当該年度に得られた結果をもとに,符号変化解の負の部分の解析を進めている。

Current Status of Research Progress
Current Status of Research Progress

1: Research has progressed more than it was originally planned.

Reason

発展的研究課題に取り組んでいる。

Strategy for Future Research Activity

当該年度の研究により劣臨界型方程式の球対称符号変化解の正の部分の集中挙動について精密な結果を得ることができた。今後は,この結果をもとに,負の部分の集中挙動の漸近的形状,エネルギー,および大域的挙動について解析を進めていく。特に,臨界型の場合のように,負の部分が一様に有界な挙動を示す場合があるのか,さらに,集中する場合にその漸近的形状をどのような極限関数で特徴づけることができるかについて研究を行う。

Causes of Carryover

コロナ感染症の影響により,国内外の出張が中止となったため。翌年度請求分は計画中の国際研究集会における海外研究者招聘費用や国内外の出張費用として使用する。

  • Research Products

    (1 results)

All 2022

All Presentation (1 results) (of which Invited: 1 results)

  • [Presentation] 指数型臨界非線形項を持つ楕円型方程式の球対称解の集中挙動について2022

    • Author(s)
      内免大輔
    • Organizer
      非線型偏微分方程式と走化性
    • Invited

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi