2019 Fiscal Year Final Research Report
Analysis of the Navier-Stokes equations by maximum norms
Project/Area Number |
17K14217
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Mathematical analysis
|
Research Institution | Osaka City University |
Principal Investigator |
Abe Ken 大阪市立大学, 大学院理学研究科, 准教授 (80748327)
|
Project Period (FY) |
2017-04-01 – 2020-03-31
|
Keywords | ストークス半群 / リュービル型定理 / 粘性ゼロ極限 / 軸対称解 / 外部問題 |
Outline of Final Research Achievements |
In this research project, we studied the initial value boundary value problem of the nonlinear Navier-Stokes equation, which is the equation of motion for incompressible viscous fluids. We investigated existence of solutions, large time behavior of solutions, convergence to vanishing viscosity limits. The results obtained include large time L_{infty}-estimates of the Stokes semigroup in external domains, global well-posedness of the two dimensional exterior problem, global well-posdness of the Cauchy problem for axisymmetric initial data without swirl and its converges to vanishing viscosity limits, construction of global-in-time solution for axisymmetric initial data in the exterior of the cylinder, etc. In addition, we also conducted researches on well-posedness of the vorticity equation and orbital stability of traveling wave solutions of the two-dimensional Euler equation.
|
Free Research Field |
偏微分方程式論
|
Academic Significance and Societal Importance of the Research Achievements |
ナヴィエ・ストークス方程式は大気や水などの非圧縮粘性流体の運動を記述する偏微分方程式である. 流体の運動を理解し応用することは古くから人々の生活を豊にしてきたが, その運動について偏微分方程式の解析により得られる知見は大きい. 偏微分方程式論においても弱解や半群など様々な解析の道具が生み出されてきた方程式であるが, 依然として数学的に重要な未解決問題が多く残されている. 本研究では半群を用いたアプローチにより外部問題, 軸対称解, 粘性極限, 渦度方程式などの研究を行い, レイノルズ数が高い非圧縮粘性流の運動について数学解析による知見を得た.
|