• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Application of quantum annealing for data analysis

Research Project

  • PDF
Project/Area Number 17K14357
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Mathematical physics/Fundamental condensed matter physics
Research InstitutionTokyo University of Science

Principal Investigator

Hashizume Yoichiro  東京理科大学, 理学部第一部応用物理学科, 講師 (50711610)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywords量子アニーリング / データ解析 / 材料・デバイス応用
Outline of Final Research Achievements

Quantum annealing is an efficient method to solve optimization problems by using quantum physics. In the present study, we have investigated the usage of quantum annealing without limit to optimization problems. And we clarified two important applications. One is an application to clarify the details of the thermoelectric materials. We show that spectral conductivity can be estimated by observable parameters, namely electrical conductivity and Seebeck coefficients, using quantum annealing. This is an inverse problem of integral equations. Another is applications to sensor networks. Sensors set on buildings give us a lot of information. We have to extract important parts of the information. We tried this extraction by quantum annealing with supplementally using deep learning methods. Furthermore, for giving the wide application of the quantum annealing for data analysis, and efficient time schedule is required. We found that entropy plays a sufficient role to find the time schedule.

Free Research Field

数理物理・物性基礎

Academic Significance and Societal Importance of the Research Achievements

世界中のいたるところをセンサーが結ぶIoT(Internet of Things)社会が実現した際には,集積された莫大なデータを解析することが必要になる.大規模なデータを適切に処理し,有益な情報を手に入れるためには,データ処理にむけた技術が必要とされる.本研究ではこの要求に応えることを目指して,情報統計力学の生んだ強力な手法である量子アニーリングをより一般的かつ多面的に大規模データの解析へと活用できる,新しい例を示すことができた.具体的な材料やデバイスへの応用可能性が示され,今後の様々な応用につながるといえる.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi