• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Final Research Report

Geometry optimization of mult-iscale grid by multi-objective optimization and its mechanism elucidation

Research Project

  • PDF
Project/Area Number 17K14589
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Fluid engineering
Research InstitutionNagasaki University

Principal Investigator

KITAMURA Takuya  長崎大学, 工学研究科, 助教 (30794648)

Project Period (FY) 2017-04-01 – 2019-03-31
Keywords乱流 / 多目的最適化 / ニューラルネットワーク / 遺伝的アルゴリズム
Outline of Final Research Achievements

We developed the multi-objective optimization method using artificial neural network and genetic algorithm, and direct numerical simulation for multiscale grid.
Under the constraint of same blockage ratio, we carried out the geometry optimization of multiscale grid for the sake of increaing turbulent Reynolds number at upstream (production region) and downstream (fully developed region).
As a consequence, we found that turbulent Reynolds number strongly depends on the grid geometry, whereas pressure drop is not dependent on the grid geometry. We also explored the grid geometry which can generate high Reynolds number flow than fractral square grid.

Free Research Field

流体工学

Academic Significance and Societal Importance of the Research Achievements

乱流の騒音や圧力損失といった問題点を抑え,混合促進などの利点を生かした最適な格子形状の探索が,社会のニーズとして求められている.
本研究では,圧力損失が小さく,強い乱れを生成できる格子形状の探索を機械学習を通して実現した.

URL: 

Published: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi