2018 Fiscal Year Final Research Report
Artificial intelligence for endocytoscopy provides fully automated diagnosis of histological healing in ulcerative colitis.
Project/Area Number |
17K15973
|
Research Category |
Grant-in-Aid for Young Scientists (B)
|
Allocation Type | Multi-year Fund |
Research Field |
Gastroenterology
|
Research Institution | Showa University |
Principal Investigator |
|
Project Period (FY) |
2017-04-01 – 2019-03-31
|
Keywords | 潰瘍性大腸炎 / 粘膜治癒 / 組織学治癒 / 人工知能 / 自動診断システム / CAD / 超拡大内視鏡 / エンドサイトスコピー |
Outline of Final Research Achievements |
In this study, we constructed and reported an endoscope automatic diagnosis system for evaluation of inflammatory activity of ulcerative colitis using artificial intelligence. As a pilot study, 22 835 ultra-magnified endoscopic images of 187 patients with ulcerative colitis taken from October 2016 to April 2018 were used. Of these, 12,900 in 87 cases were trained in artificial intelligence, and 9,953 to 525 sets of verification sample sets in 100 cases were created. The diagnostic ability of this system for histologic inflammation with a Geboes score of 3.1 or higher is 74% (95% CI: 65-81), 97% (95-99), 91% (88-93). Met. The diagnostic time per sample was about 0.4 seconds. The above results were reported in Gastrointestinal Endoscopy. (Maeda Y, et al. Gastrointest Endosc 2019.) Furthermore, by March 2019, about 45000 images were collected from 395 patients and the system was up-datad.
|
Free Research Field |
大腸内視鏡 潰瘍性大腸炎 人工知能
|
Academic Significance and Societal Importance of the Research Achievements |
潰瘍性大腸炎は現在罹患患者が急増中の疾患であり本邦で22万人を超えている。つまり専門医のみでなく、一般消化器医が診療する疾患となった。潰瘍性大腸炎患者に対しては、炎症の範囲、程度の評価が必要であり、定期的に大腸内視鏡検査がなされる。大腸粘膜の炎症の残存は病状増悪や大腸癌のリスク因子とされている。しかしながら、これまでの内視鏡診断は①微小の炎症残存を拾い上げられない。②検査医によって診断のばらつき、といった課題がある。本システムはこの二つの課題を克服することを目標する。本システムの実用化は、急増する潰瘍性大腸炎患者に対し、施設や医師を選ばず、専門医と同等の内視鏡診断を可能にすることが期待される。
|