• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Research-status Report

Development of High-Accuracy Tumor Tracking Systems for Next-Generation Radi ation Therapy Technology

Research Project

Project/Area Number 17K17582
Research InstitutionSendai National College of Technology

Principal Investigator

張 暁勇  仙台高等専門学校, 総合工学科, 助教 (90722752)

Project Period (FY) 2017-04-01 – 2020-03-31
KeywordsIGRT / Radiographic imaging / Tumor tracking / Hidden Markov model
Outline of Annual Research Achievements

The purpose of this research is to develop a markerless tracking system for image-guided radiation therapy. The tracking system is capable of tracking the respiration-induced tumor motion automatically in real-time during radiation delivery, and will be able to provide conformable tumor motion information and to allow the treatment device to deliver high-dose conformable radiation to the moving target accurately.
According to the research plan, the research achievements in the FY2017 are summarized as follows. (1) Several primitive thorax phantoms with mobile tumor have been made using a 3-D printer. (2) Using a 3-D phantom stage, the phantom experiment has been conducted at Tohoku university hospital and several kilo-voltage (kV) images data and megavoltage image data have been acquired (3) A graphical user interface (GUI) for analyzing the tumor motion has been developed using MATLAB. The tumor motion and its boundary can be drawn manually by multiple clinicians. (4) In order to improve the tracking accuracy, a hidden Markov model is proposed to extract the tumor from the radiographic image sequences. The preliminarily experimental results demonstrated the effectiveness of the proposed method.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

In the FY2017, the research has been conducted and progressed smoothly according to the research plan. A paper about tracking the deformable tumor motion in kV and MV images will be submitted to a prime international journal (Medical Physics). Several related researches on the tumor tracking in kV and MV images have also been presented in domestic and international conference.

Strategy for Future Research Activity

According to the research plan, the main research in FY2018 will be focused on the following three tasks. (1) Continually developing the real-time tracking system based on a high-accuracy and high-speed tracking algorithm. (2) Phantom experiments will be continually conducted for analyzing visual quality of the tumor under the different irradiation situation. (3) Improve the tracking performance of the current tracking system.

  • Research Products

    (9 results)

All 2018 2017

All Journal Article (2 results) (of which Peer Reviewed: 1 results) Presentation (7 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Dosimetric evaluation of MLC-based dynamic tumor tracking radiotherapy using digital phantom: Desired setup margin for tracking radiotherapy2018

    • Author(s)
      Kadoya Noriyuki、Ichiji Kei、Uchida Tomoya、Nakajima Yujiro、Ikeda Ryutaro、Uozumi Yosuke、Zhang Xiaoyong、Bukovsky Ivo、Yamamoto Takaya、Takeda Ken、Takai Yoshihiro、Jingu Keiichi、Homma Noriyasu
    • Journal Title

      Medical Dosimetry

      Volume: 43 Pages: 74~81

    • DOI

      10.1016/j.meddos.2017.08.005

    • Peer Reviewed
  • [Journal Article] 最大リャプノフ指数推定に基づく呼吸性移動時系列の予測可能性の検討2017

    • Author(s)
      市地慶,本間経康,張暁勇,武田賢,高井良尋,杉田典大,吉澤誠
    • Journal Title

      東北医学雑誌

      Volume: 129 Pages: 47-47

  • [Presentation] Classification of Mammographic Masses by Deep Learning2017

    • Author(s)
      Xiaoyong Zhang, Takuya Sasaki, Shintaro Suzuki, Yumi Takane, Yusuke Kawasumi, Tadashi Ishibashi, Noriyasu Homma, Makoto Yoshizawa
    • Organizer
      SICE Annual Conference
    • Int'l Joint Research
  • [Presentation] Deep Convolutional Neural Networkの転移学習による乳房X線画像上の腫瘤検出2017

    • Author(s)
      鈴木真太郎, 張暁勇, 本間経康, 吉澤誠
    • Organizer
      計測自動制御学会東北支部第307回研究集会
  • [Presentation] 乳がん病変検出のための深層学習を用いた計算機支援画像診断システム2017

    • Author(s)
      鈴木真太郎, 張曉勇、本間経康, 市地慶, 魚住洋佑, 高根侑美, 柳垣聡, 川住祐介, 石橋忠司, 吉澤誠
    • Organizer
      第11回コンピューテーショナル・インテリジェンス研究会
  • [Presentation] 深層学習による乳房X線画像上の腫瘤鑑別2017

    • Author(s)
      鈴木真太郎, 張曉勇, 佐々木拓也, 本間経康, 市地慶, 魚住洋佑, 高根侑美, 柳垣聡, 川住祐介, 石橋忠司, 吉澤誠
    • Organizer
      第11回コンピューテーショナル・インテリジェンス研究会
  • [Presentation] Classification of Benign and Malignant Masses in Mammogram by Using Deep Convolutional Neural Network2017

    • Author(s)
      高野寛己,張曉勇,本間経康,吉澤誠
    • Organizer
      平成29年度電気関係学会東北支部大会
  • [Presentation] 乳がん病変検出のための深層学習を用いた計算機支援画像診断システム2017

    • Author(s)
      鈴木真太郎,張曉勇,高根侑美,川住祐介,石橋忠司,本間経康,吉澤誠
    • Organizer
      計測自動制御学会 システム・情報部門学術講演会
  • [Presentation] データ拡張を用いたDCNNによる乳房X線画像上の腫瘤鑑別性能向上2017

    • Author(s)
      高野寛己,張曉勇,本間経康,吉澤誠
    • Organizer
      計測自動制御学会 システム・情報部門学術講演会

URL: 

Published: 2018-12-17  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi