2019 Fiscal Year Final Research Report
Noncommutative Deligne-Lusztig theory
Project/Area Number |
17K18722
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Algebra, Geometry, and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
Imai Naoki 東京大学, 大学院数理科学研究科, 准教授 (90597775)
|
Project Period (FY) |
2017-06-30 – 2020-03-31
|
Keywords | Deligne-Lusztig 構成 |
Outline of Final Research Achievements |
By considering an analogue of Deligne-Lusztig theory, we constructed representations which we are interested in from a number theoretic view point. More concretely, we constructed a Weil representation for a finite unitary group and its Shintani lift geometrically. Further, using an Frobenius action, we constructed and studied the Howe correspondence for a symplectic group in a special case. We studied also mod ell Weil representations and mod ell Howe correspondences.
|
Free Research Field |
数論
|
Academic Significance and Societal Importance of the Research Achievements |
数論的に興味深い表現を幾何学的に構成することができた.またその構成を用いて,新谷リフトのような関手性を幾何学的に実現したり,表現に関する性質を幾何的な手法を用いて調べることができた.さらに幾何学的に実現できていることを用いて mod ell 係数における類似の対象を自然に構成し,それらについても幾何的に調べて新しい結果が得られた.modular 表現は数論においても重要な役割を果たすため,今後の応用も期待でき,学術的意義があると考えられる.
|