• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Noncommutative Deligne-Lusztig theory

Research Project

  • PDF
Project/Area Number 17K18722
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Research Field Algebra, Geometry, and related fields
Research InstitutionThe University of Tokyo

Principal Investigator

Imai Naoki  東京大学, 大学院数理科学研究科, 准教授 (90597775)

Project Period (FY) 2017-06-30 – 2020-03-31
KeywordsDeligne-Lusztig 構成
Outline of Final Research Achievements

By considering an analogue of Deligne-Lusztig theory, we constructed representations which we are interested in from a number theoretic view point. More concretely, we constructed a Weil representation for a finite unitary group and its Shintani lift geometrically. Further, using an Frobenius action, we constructed and studied the Howe correspondence for a symplectic group in a special case. We studied also mod ell Weil representations and mod ell Howe correspondences.

Free Research Field

数論

Academic Significance and Societal Importance of the Research Achievements

数論的に興味深い表現を幾何学的に構成することができた.またその構成を用いて,新谷リフトのような関手性を幾何学的に実現したり,表現に関する性質を幾何的な手法を用いて調べることができた.さらに幾何学的に実現できていることを用いて mod ell 係数における類似の対象を自然に構成し,それらについても幾何的に調べて新しい結果が得られた.modular 表現は数論においても重要な役割を果たすため,今後の応用も期待でき,学術的意義があると考えられる.

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi