2018 Fiscal Year Final Research Report
Reliability evaluation and characteristic prediction in microfluidic devices applying stochastic process of random fluctuation problem
Project/Area Number |
17K18841
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Fluid engineering, Thermal engineering, and related fields
|
Research Institution | Kyoto University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
江利口 浩二 京都大学, 工学研究科, 教授 (70419448)
|
Project Period (FY) |
2017-06-30 – 2019-03-31
|
Keywords | 粒子と細胞 / 誘電泳動力 / 位置決めとタイミング制御 / 分取技術 / マイクロ流路 / ゆらぎと確率論 |
Outline of Final Research Achievements |
Developing a technology which can analyze and diagnose the cell characteristics and sort the cells with high throughput is an essential problem for developing the advance diagnosis and drug designing systems in the fields of biology and medicine. In the present study, we developed a technique that can control the position, velocity, spacing, and timing of the particles and cells flowing in the microchannel using dielectrophoretic force generated by microelectrodes. In the developing process, we have considered the physical characteristics and randomness of the particle motion by employing the determinism and stochastic methods, and applied it to the numerical simulation to predict the uncertainty of the particle position and design the electrode shape. We were able to develop the boxcar-type electrode which could control the particle and cell position and timing with accuracy of 5% variation and showing performance enhancement by 50~100% compared to the ladder-type electrodes.
|
Free Research Field |
伝熱工学,マイクロ流体工学
|
Academic Significance and Societal Importance of the Research Achievements |
超微小な流路を用いたマイクロ流体技術により医療,バイオ,化学の分野において粒子,液滴,細胞の生成,分析・診断,分取する技術の開発が進められている.本研究で開発した粒子と細胞の整列とタイミング制御技術は,粒子と細胞のセンシングと操作の高精度化が可能な要素技術である.開発では粒子と細胞の“ゆらぎ”を含めた運動予測の解析を用いてBoxcar型電極を設計することで,500nmと0.1msの精度で粒子と細胞の位置決めとタイミング制御が可能となり,カプセル化技術等,多くのマイクロ流体技術の開発に役立てることができる.また,開発した数値解析モデルもナノスケールや超高精度の制御技術の設計と開発に活用できる.
|