2018 Fiscal Year Final Research Report
Challenge of Self-Propelled Swimming Micro-robot Having Biofuel Cell
Project/Area Number |
17K18853
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Mechanical dynamics, Robotics, and related fields
|
Research Institution | Nagoya University |
Principal Investigator |
Arai Fumihito 名古屋大学, 工学研究科, 教授 (90221051)
|
Project Period (FY) |
2017-06-30 – 2019-03-31
|
Keywords | マイクロ・ナノデバイス / マイクロマシン / 燃料電池 / 機械力学・制御 / バイオ関連機器 |
Outline of Final Research Achievements |
The research was carried out to complete a new self-propelled swimming mechanism suitable as an element technology of biomedical microrobot. We proposed a new mechanism propelled by self-electroosmotic flow generated by a biofuel cell fueled by glucose and oxygen that can be supplied in vivo. Using the standard photolithography, we have established fabrication process of 100 μm prototypes consisting of UV-curable resist, silver nanoparticles, and enzymes. We developed an evaluation system of the propulsion velocity using an optical microscope and image analysis, and established its evaluation method. We evaluated the velocity of the 100 μm prototype by experiments and confirmed the generation of the propulsion velocity close to the theoretical value, and demonstrated the validity of this new mechanism. In addition, we have almost established the fabrication process of 10 μm prototypes by three-dimensional laser lithography.
|
Free Research Field |
機械力学およびメカトロニ クス関連
|
Academic Significance and Societal Importance of the Research Achievements |
生体医用マイクロロボットが実現できれば,革新的かつ究極的な非侵襲の生体内治療が可能となる.そのためには生体環境における動力供給と泳動推進が最重要な未解決課題である.これを解決するため,本研究の提案機構は,生体内で供給しうる物質を動力源とし,粘性が支配的なマイクロスケールの流体環境に有効な推進原理を用いており,更に微細化,集積化,無線化が可能となり,生体医用マイクロロボット技術のキーコンポーネントとして最適かつ革新的である.また本機構は,従来の医療処置の精度を高める推進機構としても応用できる可能性がある.例えば血管カテーテルガイドワイヤの先端に本機構を設置し,牽引・誘導する機能が考えられる.
|