• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Development of a motor learning support algorithm based on the functional brain network analysis during cooperative motor learning

Research Project

  • PDF
Project/Area Number 17KK0064
Research Category

Fund for the Promotion of Joint International Research (Fostering Joint International Research)

Allocation TypeMulti-year Fund
Research Field Developmental mechanisms and the body works
Research InstitutionTokyo University of Agriculture and Technology

Principal Investigator

KONDO Toshiyuki  東京農工大学, 工学(系)研究科(研究院), 教授 (60323820)

Project Period (FY) 2018 – 2020
Keywordsロボット / 協調運動学習 / エージェント / 脳波解析
Outline of Final Research Achievements

When learning a new skill through unknown environment, it is helpful to have an expert guidance. It is fundamentally based on the mutual interactions. From the perspective of the beginner, one needs to face dual unknown dynamics of environment and motor coordination of the expert. This inevitably involves the process of adaptation to the partner. Within a cooperative visuo-haptic motor task, we asked the novice participants to control the virtual mass toward the specified target under unknown external force field as an individual or with an expert or another novice. Experimental results suggested; (1) Peer-to-peer interactions among beginners to achieve a common goal enhanced the motor learning most, (2) Individuals practicing on their own showed the better motor learning than practicing under the expert’s guidance. Regarding the adaptability, peer-to-peer interactions induced higher adaptability to a new partner than the novice-to-expert interactions.

Free Research Field

知能情報学

Academic Significance and Societal Importance of the Research Achievements

ロボットリハビリテーションのように人がロボットと協調して未知なる運動課題を経験・学習する場合,学習者は環境(課題)と協調相手(ロボット)という二つの未知ダイナミクスが重ね合わされた対象の下で運動学習する必要がある.本研究の結果,まずロボットのダイナミクスに習熟した後に二重ダイナミクスを経験する手順をとることで,学習後に両者を分離して獲得できたことから,ロボットリハビリテーションにおいても,ロボットの支援戦略を先に体得させた後にリハビリ課題の難易度を高めることが有効であると考えられる.また,運動下の脳波解析法はリハビリ下の患者の状態を類型化して運動支援戦略を変更できる可能性がある.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi