2006 Fiscal Year Annual Research Report
Project/Area Number |
18330039
|
Research Institution | The University of Tokyo |
Principal Investigator |
大森 裕浩 東京大学, 大学院経済学研究科, 助教授 (60251188)
|
Co-Investigator(Kenkyū-buntansha) |
石田 功 東京大学, 大学院経済学研究科, 講師 (20361579)
和合 肇 名古屋大学, 経済学研究科, 教授 (00091934)
渡部 敏明 一橋大学, 経済研究所, 教授 (90254135)
古澄 英男 神戸大学, 経営学研究科, 教授 (10261273)
大鋸 崇 千葉大学, 法経学部, 助教授 (50326005)
|
Keywords | マルコフ連鎖モンテカルロ法 / ベイズ統計学 / サンプル・セレクションモデル / ボラティリティ変動モデル / カウントデータ |
Research Abstract |
本研究ではまず大森が、マルコフ連鎖モンテカルロ法を用いたベイズ計量経済モデルについて幾つかの提案を行っている。一つは確率的ボラティリティ変動モデルにおいて、レバレッジ効果を取り入れたモデルの非常に効率的な推定方法を開発・提案したことであり、このモデルを含むより一般的な非線形状態空間モデルにおいて、効率的な推定方法をどのようにするべきかについても検討した。また労働経済学などで頻繁に用いられているサンプル・セレクションモデルについて、次に渡部は金利の期間構造モデルに関する研究と資産価格のボラティリティに関する研究である。後者では特にRealized Volatility(RV)と呼ばれる日中リターンからノンパラメトリックに計算されるボラティリティを中心に研究を行った。RVに関する研究は日本ではこれまでほとんど行われていない中、日本の株式市場のRVについて研究を行っており、日本でも欧米同様、RVを用いたほうが従来のようにGARCHモデルを用いるよりもボラティリティの予測パフォーマンスが高いことをはじめ、いくつかの興味深い結果を示している。石田は日経平均・TOPIXの毎分データ、日経平均先物・TOPIX先物・円ドル為替Tickデータ、を、「実現(realized)ボラティリティ」の日次系列に加工し、その時系列特性についての分析を行った。このような金融実現ボラティリティの先行研究ではGaussian ARFIMAモデルのフィットが十分であると報告されているが、各系列のARFIMAモデル残差を診断したところ分散不均一性が検出された。この結果に基づき、ARFIMA-GARCHモデルをLing & Li(1997)の近似的MLEの方法により推定、GARCH効果及びフィットの改善を確認した。大鋸はマルコフ切替モデルと状態空間モデルを組み合わせた計量モデルにマルコフ連鎖モンテカルロ法を応用し、景気循環の局面を識別するモデルの構築を行い、『Estimation of Phase of Business Cycle』と『A State Space Approach to the Reference Date Determination』というタイトルで計6回の研究発表を行った。また、マルコフ切替モデルを証券データに応用し、相場の強気、弱気を判別するモデルを構築し、『株式市場における相場の強気・弱気をマルコフ切替モデルで分析する』というタイトルで論文をまとめ、投稿中である。また古澄はプロビットモデルとポアソン回帰モデルを組み合わせた内生的スイッチングモデルに対して,従来とは異なる定式化を行うことによってマルコフ連鎖モンテカルロ法の推定効率が改善されることを示した.また,多項プロビットモデルに対して,Liu(2003)によって提案されたalternating subspace-spanning resampling法の適用を考え,既存の方法よりも簡単に実行できるアルゴリズムを開発し,推定効率も改善されることを明らかにした.和合は2006年度は隣接効果を取り入れたモデルの時系列的な変化を空間パネルデータを用いて推定する方法をいくつかのモデルに当てはめ,ベイズ推定を行った。最近の成果のいくつかを国際学会等で発表し,他の研究者と議論を行った。
|
Research Products
(11 results)