• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2007 Fiscal Year Final Research Report Summary

Study of Geostatistical Predictions based on Block Data

Research Project

Project/Area Number 18500211
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Statistical science
Research InstitutionTokyo Institute of Technology

Principal Investigator

MASE Shigeru  Tokyo Institute of Technology, Department of Math and Comp. Sciences, Professor (70108190)

Project Period (FY) 2006 – 2007
KeywordsBlock Data / Geostatistics / Spatial Prediction / Maximu Likelihood Estimator / Cokriging / Numerical Integration / Statistical Analysis System R / Programming Manual
Research Abstract

In the master thesis "On the study of an algorithm of parameter estimation for Kriging method for block data" (2006, Koji Takahashi), we proposed a Kriging method for geostatistical prediction based on block data and developed an efficient algorithm for calculating maximum likelihood estimators of Kriging. In this study, block are restricted to congruent rectangles. We have been trying to extend the proposed algorithm to block of more general forms. But this needs calculation of a lot of large covariance matrices Each elements of which needs a time-consuming numerical integrations and distributed computations are unavoidable. We have been carrying numerical experiments and hope the result will be published in near future.
In the master thesis "On the study of cokrging method when there are numerous covariates" (2007, Kenji Usuda), we consider a cokriging method under the condition that there are numerous covariates. In this situation, a standard method uses only a part of covariates in order to ease numerical computations and certainly discards a certain information contained covariates. We proposed to use blocks into which cavariates are partitioned and use covariances between blocks. A preliminary numerical experiments done in the thesis, our new method shows a better performance than a traditional method. We hope to publish the results after more experiments in near future.
Also Mase published a programming manual of the system R which is an open source statistical system which has become a common workbench of statistical analysis all over the world. The book has gotten a good reputation.

  • Research Products

    (12 results)

All 2008 2007

All Journal Article (5 results) (of which Peer Reviewed: 1 results) Presentation (4 results) Book (3 results)

  • [Journal Article] Asymptotic Properties of Maximum Collective Conditional Likelihood Estimators for Naive Bayes Classifiers2008

    • Author(s)
      Wijayatunga, W. J. P. S. P. and S. Mase
    • Journal Title

      International Journal of Statistics and Systems (In press)

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Asymptotic Properties of Maximum Collective Conditional Likelihood Estimators for Naive Bayes Classifiers2008

    • Author(s)
      Wijayatunga, W. J. P. S. P. and S., Mase
    • Journal Title

      International Journal of Statistics and Systems, to be published in 2008

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Bayesian Belief Networks2008

    • Author(s)
      S., Mase
    • Journal Title

      A Practical Guide to Applications 15(Contributed to Chapter)

      Pages: 263-277

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] R Programing Manual (in Japanese)2007

    • Author(s)
      S., Mase
    • Journal Title

      Suuri Kougaku Sha

      Pages: 335

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Dictionary of Statistical Data Sciences (in Japanese) (Contributed to one item, pp.506-507)K. Sugiyama, et. al. (eds.)2007

    • Author(s)
      S., Mase (in Japanese)
    • Journal Title

      Asakura Publisher

      Pages: 788

    • Description
      「研究成果報告書概要(欧文)」より
  • [Presentation] Geostatistical Prediction Based on Block Data2007

    • Author(s)
      間瀬茂
    • Organizer
      14th Workshop on Stochastic Geometry, Stereology and Image analysis
    • Place of Presentation
      Neudietendorf, Germany
    • Year and Date
      2007-09-25
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Geostatistical Prediction Based on Block Data2007

    • Author(s)
      Shigeru Mase
    • Organizer
      14th Workshop on Stochastic Geometry, Stereology and Image Analysis
    • Place of Presentation
      Neudietendorff, Germany
    • Year and Date
      2007-09-25
    • Description
      「研究成果報告書概要(欧文)」より
  • [Presentation] ブロックデータに基づく地球統計学的予測法について2007

    • Author(s)
      坂口孝之、間瀬茂
    • Organizer
      日本統計学会
    • Place of Presentation
      神戸大学
    • Year and Date
      2007-08-24
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Geostatistical Prediction Based on Block Data2007

    • Author(s)
      T. Sakaguchi, S. Mase
    • Organizer
      Annual Meeting of Japan Statistical Society, Kobe University
    • Place of Presentation
      Kobe city, Japan
    • Year and Date
      2007-08-24
    • Description
      「研究成果報告書概要(欧文)」より
  • [Book] Bayesian Belief Networks: A Practical Guide to Applications2008

    • Author(s)
      O. Pourret, et. al.(eds.)(間瀬茂が15章を分担執筆)
    • Total Pages
      442
    • Publisher
      John Wiley & Sons Inc
    • Description
      「研究成果報告書概要(和文)」より
  • [Book] Rプログラミングマニュアル2007

    • Author(s)
      間瀬茂
    • Total Pages
      335
    • Publisher
      数理工学社
    • Description
      「研究成果報告書概要(和文)」より
  • [Book] 統計データ科学事典(項目「空間データ解析」pp.506-507)2007

    • Author(s)
      杉山高一, 他編(間瀬茂が項目分担執筆)
    • Total Pages
      788
    • Publisher
      朝倉書店
    • Description
      「研究成果報告書概要(和文)」より

URL: 

Published: 2010-02-04  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi