• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2007 Fiscal Year Final Research Report Summary

New construction of vector bundles on Riemann surfaces and Verlinde's formula

Research Project

Project/Area Number 18540039
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionSaga University

Principal Investigator

ICHIKAWA Takashi  Saga University, Faculty of Science and Engineering, Professor (20201923)

Co-Investigator(Kenkyū-buntansha) NAKAHARA Toru  Saga University, Faculty of Science and Engineering, Professor (50039278)
MITOMA Itaru  Saga University, Faculty of Science and Engineering, Professor (40112289)
UEHARA Tsuyoshi  Saga University, Faculty of Science and Engineering, Professor (80093970)
TERAI Naoki  Saga University, Faculty of Culture and Education, Associated Professor (90259862)
HIROSE Susumu  Saga University, Faculty of Science and Engineering, Associated Professor (10264144)
Project Period (FY) 2006 – 2007
KeywordsRiemann surface / Schottky group / Vector bundle / Moduli space / Abel-Jacobi's theorem / Verlinde's formula / Siegel modular form / p-adic Siegel modular form
Research Abstract

1. We showed that any stable vector bundle of degree 0 on a Riemann surface close to a maximally degenerate curve is obtained from a linear representation of the Schottky group uniformizing the Riemann surface. Further, we described the relationship between the representation space of the Schottky group and the moduli space of the vector bundles by using Abel-Jacobi's theorem and Verlinde's formula.
2. We described the ring structure of Siegel modular forms of degree 2 over a ring containing 1/6 extending Igusa's result. Further, we extended results of Swinnerton-Dyer, Serre and Katz on congruence and p-adic properties of elliptic modular forms to the case of Siegel modular forms.
3. We gave a mathematical rigorous model of the one loop approximation of the perturbative Chern-Simons integral in an abstract Wiener space setting, and by appealing to the Malliavin-Taniguchi formula of changing variables on the abstract Wiener space, we derived the asymptotic expansion for the Chern-Simons integral with respect to the charge parameter.

  • Research Products

    (6 results)

All 2007 2006 Other

All Journal Article (4 results) (of which Peer Reviewed: 2 results) Presentation (2 results)

  • [Journal Article] A family of Schottky groups arising from the hypergeometric equation2006

    • Author(s)
      Takashi Ichikawa, Masaaki Yoshida
    • Journal Title

      Proc. Amer. Math. Soc. 134

      Pages: 2271-2280

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] A family of Schottky groups arising from the hypergeometric equation2006

    • Author(s)
      Takashi, Ichikawa, Masaaki, Yoshida
    • Journal Title

      Proc. Amer. Math. Soc., Refereed 134

      Pages: 2271-2280

    • Description
      「研究成果報告書概要(欧文)」より
  • [Journal Article] Congruences between Siegel modular forms

    • Author(s)
      Takashi Ichikawa
    • Journal Title

      Math. Ann. (印刷中)

    • Description
      「研究成果報告書概要(和文)」より
    • Peer Reviewed
  • [Journal Article] Congruences between Siegel modular forms

    • Author(s)
      Takashi, Ichikawa
    • Journal Title

      Math. Ann., Refereed (in press)

    • Description
      「研究成果報告書概要(欧文)」より
  • [Presentation] Siegel modular forms mod p2007

    • Author(s)
      市川 尚志
    • Organizer
      第2回福岡数論研究集会
    • Place of Presentation
      九州大学
    • Year and Date
      2007-08-30
    • Description
      「研究成果報告書概要(和文)」より
  • [Presentation] Siegel modular forms mod p2007

    • Author(s)
      Takashi, Ichikawa
    • Organizer
      The second conference on number theory at Fukuoka
    • Place of Presentation
      Kyushu University
    • Year and Date
      2007-08-30
    • Description
      「研究成果報告書概要(欧文)」より

URL: 

Published: 2010-02-04  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi