2007 Fiscal Year Annual Research Report
Project/Area Number |
18540044
|
Research Institution | Osaka Prefecture University |
Principal Investigator |
加藤 希理子 Osaka Prefecture University, 理学系研究科, 准教授 (00347478)
|
Co-Investigator(Kenkyū-buntansha) |
入江 幸右衛門 大阪府立大学, 理学系研究科, 教授 (40151691)
吉冨 賢太郎 大阪府立大学, 総合研究教育機構, 講師 (10305609)
|
Keywords | 環論 |
Research Abstract |
本年度は、以下の研究を行った。 三角圏のねじれ対に関する研究 三角圏の部分圏の捩れ対について、研究した。1.ホモトピー圏における捩れ圏:ホモトピー圏においては、下方有限、上方有限、非輪状な圏からなる振れ対があること。2.捩れ対のもたらす対称性:捩れ対と連動する函手においては、対の片方の部分圏においてこの函手が同値(または稠密、忠実、充満)であるときには、もう片方の部分圏においても、ひいて圏全体で函手が同じ性質をもつことがわかった。3.商圏との関連:捩れ対が商圏においても捩れ対であるための条件を調べた。4.ゴレンシュタイン環の場合:3組の捩れ対が観察され、非常に高い対称性をもつことがわかった。これは、環自身の対称性が本質的である。5.捩れ対の多角形:3組以上の捩れ対が、Serre函手によって体系的に構成されることがわかった。6.定理:ゴレンシュタイン環上のあるホモトピー商圏が、上三角行列環のコーエン・マコーレー加群の安定圏と三角同値であることを示した。このBuchweitz型の定理は、先行するBuchweitzの定理におけるホモトピー商圏を部分圏として含む。
|
Research Products
(2 results)