• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Annual Research Report

孤立特異点の代数幾何的不変量と可換環論的分類

Research Project

Project/Area Number 18540051
Research Category

Grant-in-Aid for Scientific Research (C)

Research InstitutionNihon University

Principal Investigator

泊 昌孝  日本大学, 文理学部, 教授 (60183878)

Co-Investigator(Kenkyū-buntansha) 渡辺 敬一  日本大学, 文理学部, 教授 (10087083)
松浦 豊  日本大学, 文理学部, 助教授 (50096905)
Keywords単純K3特異点 / ベロネーゼ環 / 字数付き環 / exceptional log canonical singularity / F-threshold / 密着閉包 / stack / 特異点解消
Research Abstract

標題に掲げている問題と関連して、メンバーそれぞれに以下のような研究の進展と結果が得られた。
代表者の泊は、2次元楕円型などについての詳しい分類をあげていたが、研究過程において、関連する3次元特異点についての具体的な分類に大きな進展があった。いわゆる95の分類から外れる超曲面単純K3特異点の方程式が、あと5つのクラスに限られるための、十分条件が見つかった。そのうち、4つのクラスはすでに存在がベロネーゼ環を付随する次数付き環に用いて見つける方法で知られているものだったが、完全な新発見の特異点がひとつ見つかった。今回想定された十分条件の妥当性は、exceptional log canonical singularityの分類論でも問題にされているものである。
渡辺は、正標数の環のイデアルの組に対するF-thresholdの研究が主要課題であった.F-thresholdの概念は1c thresholdの概念と深く関係し,multiplier idealのJumping coefficientと関連している。昨年度はF-thresholdとイデアルの整閉包,密着閉包との関係,F-thresholdと重複度の関係などを研究した。
松浦は、Algebraic stackの基礎理論の整備を目指し、特異点解消とモジュライ空間について、ファンクトリアリティについての考察をおこなった。内外の研究との関連から、一年目として目的となる命題の定式化に前進があった。
これらの結果はそれぞれ著者別に論文にて発表が予定されている。

  • Research Products

    (2 results)

All 2006 Other

All Journal Article (2 results)

  • [Journal Article] Adjacent integrally closed ideals in 2-dimensional regular local rings.2006

    • Author(s)
      S.Noh, K, -i.Watanabe
    • Journal Title

      J. of Algebra 300

      Pages: 156-166

  • [Journal Article] Totally reflexive modules constructed from smooth projective curves of genus g≧2

    • Author(s)
      R.Takahashi, K.-i.Watanabe
    • Journal Title

      Arkiv fur Math. (to appear 巻、号、発行年、ページ数未定)

URL: 

Published: 2008-05-08   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi