Research Abstract |
Although gefitinib, a selective inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, has been clinically demonstrated to be effective for certain cancer cell types, the molecular mechanisms of the anti-tumor activity have not been fully elucidated. In this study, we investigated the mechanism of gefitinib-induced growth inhibition and apoptosis in HAG-1 human gallbladder adenocarcinoma cells. Treatment of gefitinib at a dose of 1 mM resulted in a significant growth inhibition, and the cell number irreversibly declined after 72-h incubation, with a progressive expansion of apoptotic cell population over 120-h. Following 2-h treatment, gefitinib significantly inhibited EGFR autophosphorylation and subsequent downstream signaling pathway through Erk and Akt, and induced accumulation of cells in the G0/G1 phase of the cell cycle at 24-h, accompanied by a concomitant increase in p21 transcript and increased expression of p27. Gefitinib did not affect the amount of total and
… More
phosphorylated p53 at serine 15, but upregulated the expression of total Bax, with subsequent increase in p18 Bax, an active form of Bax. The expression of Bcl-2 and Bad was unchanged. An increase in gefitinib-induced expression of total Bax might be due to the decreased degradation of Bax, because the level of Bax mRNA has not been altered by gefitinib treatment. Gefitinib promoted the cleavage of full-length p21 Bax into p18 Bax in mitochondrial-enriched fraction, a characteristic feature of Bax activation toward apoptosis. Moreover, blockade of Bax by using anti-Bax small interfering double stranded RNA (siRNA) significantly reduced gefitinib-induced apoptosis. Taken together, these data suggest a critical role of p18 Bax in gefitinib-induced apoptosis. Next, we investigated the mechanistic role of Src and Ras, major oncogene products implicated in the pathogenesis of many human cancers in gefitinib sensitivity. Using parental and v-src- or c-H-ras-transfected HAG-1 human gallbladder adenocarcinoma cell lines, effects of gefitinib on cytotoxicity, cell cycle purtubation and apoptosis, and tyrosine phosphorylation of EGFR, Akt, and Erk were determined by WST-1 assay, flow cytometry, and Western blots, respectively Activated Ras and Src conferred a strong resistance to gefitinib by nearly 30-fold and 200-fold, respectively. Geftinib induced accumulation of cells in the G0/G1 phase of the cell cycle at 24-h, with progressive expansion of apoptotic cell population in parental HAG-1 cells, but these effects were completely abolished in v-src- or c-H-ras-transfected cell line. Upon gefitinib treatment, EGFR activation and subsequent downstream activation through Erk and Akt were significantly inhibited in HAG-1 cells. By contrast, gefinitib failed to inhibit the activation of both Akt and Erk in v-src-transfected cells and Erk, but not Akt in c-H-ras-transfected cells, despite the blockade of EGFR activation in these respective cell lines. Treatment of v-sre-transfected cells with herbimycin A, a Src tyrosine kinase inhibitor, partially revearsed the gefinitib resustance, with concomitant inhibition of Akt and Erk. Our results suggest that activated Ras and Src could induce gefinitib resistance by activating either or both of Akt and Erk signaling pathways, thus providing a strategic rationate for assessment of these specific signaling molecules downstream of EGFR to customize treatment. Less
|