2007 Fiscal Year Final Research Report Summary
The mechanisms of S100A8/A9-mediated macrophage activation in rheumatoid arthritis
Project/Area Number |
18591111
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
膠原病・アレルギー・感染症内科学
|
Research Institution | Aichi Medical University |
Principal Investigator |
YAMAMURA Masahiro Aichi Medical University, Department of Rheumatology, Professor (80252956)
|
Project Period (FY) |
2006 – 2007
|
Keywords | rheumatoid arthritis / macrophages / S100A8 / A9 protein / cytokines / signal transduction |
Research Abstract |
S100A8 and S 100A9, two Ca_<2+->binding proteins of the S 100 family, are secreted as a heterodimeric complex (S100A8/A9) from neutrophils and monocytes/macrophages. Serum and synovial fluid levels of S100A8, S100A9, and S100A8/A9 were all higher in patients with rheumatoid arthritis (RA) than in patients with osteoarthritis (OA), with the S100A8/A9 heterodimer being prevalent. By two-color immunofluorescence labeling, S100A8/A9 antigens were found to be expressed mainly by infiltrating CD68_+ macrophages in RA synovial tissue (ST). Isolated ST cells from patients with RA spontaneously released larger amounts of S100A8/A9 protein than did the cells from patients with OA. S100A8/A9 complexes, as well as S100A9 homodimers, stimulated the production of proinflammatory cytokines, such as tumor necrosis factor alpha, by purified monocytes and in vitro-differentiated macrophages. S100A8/A9-mediated cytokine production was suppressed significantly by p38 mitogen-activated protein kinase (MAPK) inhibitors and almost completely by nuclear factor kappa B (NF-κB) inhibitors. NF-κB activation was induced in S100A8/A9-stimulated monocytes, but this activity was not inhibited by p38 MAPK inhibitors. These results indicate that the S100A8/A9 heterodimer, secreted extracellularly from activated tissue macrophages, may amplify proinflammatory cytokine responses through activation of NF-KB and p38 MAPK pathways in RA.
|
Research Products
(15 results)