• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2006 Fiscal Year Annual Research Report

持続型テキスト分類学習のためのフィードバックナビゲーション

Research Project

Project/Area Number 18700084
Research InstitutionToyohashi University of Technology

Principal Investigator

岡部 正幸  豊橋技術科学大学, 情報メディア基盤センター, 助教 (50362330)

Keywordsトランスダクティブ学習 / クエリ拡張 / 文字列解析 / 異常発見
Research Abstract

本年度は,主に2つのテーマに関する研究を行った.
「トランスダクティブ学習による最小文書判定からのクエリ拡張」に関する研究では,情報検索を行う際のユーザフィードバックとして適合文書が1つ見つかるまでの最小文書判定情報しか与えられない場合に有効に機能するクエリ拡張方法を提案した.提案手法の特徴は,最小のフィードバック情報から適合文書である可能性の高い他の文書を見つけ出すためにトランスダクティブ学習のSGTアルゴリズムを利用する点と単語のスコア計算を行う際に不足する統計情報を補うため複数の学習結果を重ね合わせて単語のスコア計算を行う点にある.実験において標準的な手動フィードバック型,擬似フィードバック型クエリ拡張方法と比較した結果,提案手法は初期検索結果が良くない場合に効果を発揮することが分かった.
また,「文字列解析に基づくネットワークトラフィックデータからの異常発見」に関する研究では,ネットワーク上の異常トラフィックを,時系列データの文字列表現手法を用いて検出する方法を提案した.文字列表現による異常発見方法としてマルコフモデルによる方法が既に提案されているが,ネットワークデータに適用した場合,誤検知が多く,これをそのまま使用すると発見効率が悪い.このため,マルコフモデルによって列挙された文字列集合にクラスタリングによるはずれ値検出手法を適用することで,誤検知を取り除く方法を提案した.実際にトラフィックデータを使用した実験を行った結果,提案手法の有効性を示すことができた.

  • Research Products

    (2 results)

All 2006

All Journal Article (2 results)

  • [Journal Article] トランスダクティブ学習による最小文書判定からのクエリ拡張2006

    • Author(s)
      岡部 正幸, 山田 誠二
    • Journal Title

      人工知能学会論文誌 Vol.21,No.4

      Pages: 398-405

  • [Journal Article] 文字列解析に基づくネットワークトラフィックデータからの異常発見2006

    • Author(s)
      岡部正幸, 三輪多恵子, 梅村恭二
    • Journal Title

      インターネットカンファレンス 予稿集

      Pages: 67-74

URL: 

Published: 2008-05-08   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi