• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2007 Fiscal Year Annual Research Report

非線型分散型及び双曲型方程式に対する漸近解析

Research Project

Project/Area Number 18740076
Research InstitutionTokyo Metropolitan University

Principal Investigator

下村 明洋  Tokyo Metropolitan University, 大学院・理工学研究科, 助教 (00365066)

Keywords解析学 / 関数方程式論 / 関数解析学 / 応用数学
Research Abstract

非線型シュレディンガー方程式を中心とした非線型分散型偏微分方程式や関連する非線型偏微分方程式系の解の時間減衰や長時間挙動に関して研究した。平成19年度に得られた研究成果の概要は以下の通りである。
1.シュレディンガー方程式と改良ブシネスク方程式の非線型連立系であるシュレディンガー_改良ブシネスク方程式系について,与えられた散乱データのシュレディンガー成分が適当に小さい場合に,シュレディンガー_改良ブシネスク方程式系の漸近自由解の存在と一意性を証明した。
2.空間1次元から3次元の場合に,1+2/nより小さい冪の非線型消散項を持つシュレディンガー方程式について,小さい初期データに対して,初期値問題の解の時間減衰と時刻無限大での解の漸近形を求めた。ここで,nは空間次元である。(この研究は,北直泰氏との共同研究である。)
3.ゲージ条件を満たさない非線型項を含む4階シュレディンガー型方程式の解の長時間挙動についても研究し,成果が得られた。(この研究は瀬片純市氏との共同研究である。)

  • Research Products

    (3 results)

All 2007

All Journal Article (3 results) (of which Peer Reviewed: 3 results)

  • [Journal Article] Scattering theory for the Schrodinger-improved Boussinesq system in two space dimensions2007

    • Author(s)
      Akihiro Shimomura
    • Journal Title

      Asymptotic Analysis 51

      Pages: 167-187

    • Peer Reviewed
  • [Journal Article] Asymptotic behavior of solutions to Schrodinger equations with a subcritical dissipative nonlinearity2007

    • Author(s)
      Naoyasu Kita
    • Journal Title

      Journal of Differential Equations 242

      Pages: 192-210

    • Peer Reviewed
  • [Journal Article] Global existence and asymptotic behavior of solutions to the fourth order nonlinear Schrodinger type equation2007

    • Author(s)
      Jun-ichi Segata
    • Journal Title

      Communications in Applied Analysis 11

      Pages: 169-188

    • Peer Reviewed

URL: 

Published: 2010-02-04   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi