• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Moduli of coherent sheaves and complexes

Research Project

  • PDF
Project/Area Number 18H01113
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionKobe University

Principal Investigator

Yoshioka Kota  神戸大学, 理学研究科, 教授 (40274047)

Project Period (FY) 2018-04-01 – 2023-03-31
KeywordsK3曲面、Enriques曲面 / アーベル曲面 / Brill-Noether / 安定層
Outline of Final Research Achievements

I studied the birational geometry of stable sheaves on Enriques surfaces. In particular, with Howard Nuer, I proved that the moduli of odd rank stable sheaves is birationally equivalent to the Hilbert scheme of points. For the moduli of stable sheaves on a K3 surface with the Picard rank 1, I studied weak Brill-Noether property. This is a joint work with Izzet Coskun and Howard Nuer. For the derived category of an abelian surface, I calculated the categorical entropy of some endofunctor. In particular I confirmed a conjecture of Kikuta and Takahashi in this case.I also studied the birational automorphism group of a generalized Kummer variety.

Free Research Field

代数幾何

Academic Significance and Societal Importance of the Research Achievements

安定層やそのモジュライは微分幾何やYang-Mills理論(インスタントン)と関係し、様々な立場から研究がなされてきた。特に標準束が自明あるいはそれに近い場合、モジュライ空間の標準束も自明あるいはそれに近くなり代数幾何学的に興味深い構造を持っている。この研究ではEnriques曲面や楕円曲面上のモジュライについての双有理同型類、genericな安定層のコホモロジー群の挙動、圏論的エントロピーなどについて成果を得ることができた。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi