• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Fast and slow light, Goos-Hanchen shift in multistage coupled resonators

Research Project

  • PDF
Project/Area Number 18H01150
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 13020:Semiconductors, optical properties of condensed matter and atomic physics-related
Research InstitutionShizuoka University

Principal Investigator

Tomita Makoto  静岡大学, 理学部, 教授 (70197929)

Co-Investigator(Kenkyū-buntansha) 松本 貴裕  名古屋市立大学, 大学院芸術工学研究科, 教授 (10422742)
Project Period (FY) 2018-04-01 – 2022-03-31
Keywordsグースハンシェンシフト / ファノ干渉 / ファノ多層膜 / 分散 / 速い光 / 遅い光 / 誘導透明化現象 / リング共振器
Outline of Final Research Achievements

We have so far studied "fast and slow light" using withering gallery modes in microscopic sphere resonators, as well as "coupled resonator-induced transparency phenomenon" that occurs when two or more microspheres are coupled with respect to each other. Here, we have developed our research in two directions. First, the induced transparency phenomenon, which was conventionally studied only in the frequency domain, has been extended to the k (wavenumber) domain. The plasmon-induced transparency phenomenon was realized in the k-domain by Fano interference, and a giant Goos Hanchen shift was realized by utilizing the steep dispersion in the k -domain induced window. The giant Goos Hanchen shift corresponds to the "slow light" which is studied in the time domain. Second, we equivalently constructed a system in which a large number of resonators with perfectly matching resonance frequencies were arranged in series, and proceeded with research related to "fast light" and causality.

Free Research Field

量子エレクトロニクス

Academic Significance and Societal Importance of the Research Achievements

(1)金属誘電体多層膜Fano構造を新しく提案し、従来の報告中では最大となる巨大なGHシフトを実現した。このGHシフトのユニークな特長はFano構造の位相反転効果を利用することで巨大GHシフトと高い反射率が共存していることである。巨大なGHシフトは、センサーなどへの応用にも高い可能性を持っている。
(2)微小球共振器のモードが作り出す分散は、原子の作り出す分散と類似している。しかしながら、単一の共振器は「伝播効果」を含んでいない。本研究では、ダイナミックな帰還ループを用い、複数の共振器を多段に配列した系を等価的に作り出し、光の伝播に関する学術的意義の高い多彩な実験を展開できた。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi