• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Elucidation and demonstration of design solutions for fuel cell electrodes that minimize energy loss

Research Project

  • PDF
Project/Area Number 18H01383
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 19020:Thermal engineering-related
Research InstitutionOsaka University

Principal Investigator

Tsushima Shohji  大阪大学, 工学研究科, 教授 (30323794)

Co-Investigator(Kenkyū-buntansha) 鈴木 崇弘  大阪大学, 工学研究科, 助教 (90711630)
Project Period (FY) 2018-04-01 – 2022-03-31
Keywords燃料電池 / 物質輸送 / ナノマイクロ構造制御 / 数理最適化
Outline of Final Research Achievements

This research was conducted to clarify and demonstrate the design solution of the porous electrode called catalyst layer, that minimizes the energy loss in the polymer electrolyte fuel cell. Considering electrode materials and voids in the catalyst layer and their volume fractions, a three-dimensional reaction transport structure model with the two-phase flow behavior was developed, and the design factors and energy loss of the electrode catalyst layer were investigated. For the demonstration, we developed the microprinting technology and carried out cross-section analysis and thermal analysis measurement to clarify the mechanism by which the porous structure was different in the microprinting catalyst layer and the cell performance was improved. We have acquired the structural analysis method and structural control technology that are the basis for elucidating and demonstrating the design solution of the fuel cell electrodes for the minimization of energy loss.

Free Research Field

熱工学

Academic Significance and Societal Importance of the Research Achievements

固体高分子形燃料電池は,次世代の自動車用動力源として国内外で活発な研究開発が進められています.さらなる普及拡大のためには,エネルギー効率の向上によるシステムコストの低減が求められます.本研究では,固体高分子形燃料電池のエネルギー効率向上の鍵となる電極に着目し,内部構造ならびに材料分布の設計と実現についての研究開発を実施しました.電池構造にもとづいて性能を予測するシミュレーションモデルを構築し,材料分布の形成が電池性能の向上をもたらすことを示しました.実際に,構造化された電極をマイクロプリンティング技術により作製し,従来手法とは異なる空隙構造により,燃料電池性能が向上する機構を明らかにしました.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi