2020 Fiscal Year Final Research Report
Development of wavelet-based conditional sampling and averaging method and the application to the noise source identification of supersonic jet broadband noise
Project/Area Number |
18H01621
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 24010:Aerospace engineering-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Teramoto Susumu 東京大学, 大学院工学系研究科(工学部), 教授 (30300700)
|
Co-Investigator(Kenkyū-buntansha) |
岡本 光司 東京大学, 大学院新領域創成科学研究科, 准教授 (70376507)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Keywords | 空力音響 / 超音速ジェット / 条件付き抽出 |
Outline of Final Research Achievements |
The mechanism of the noise generation from high-speed engine exhausts was studied. Wavelet-based conditional sampling and averaging (WB-CSA) method was modified and applied to the analysis of the acoustic signal and the unsteady visualization data obtained from wind-tunnel tests. The analysis successfully visualized the process of acoustic wave generation caused by large-scale disturbances. The mechanism was further studied by the numerical simulation. It was shown that the acoustic waves emanate from the interaction between the disturbance and the shock waves.
|
Free Research Field |
航空宇宙工学、流体力学
|
Academic Significance and Societal Importance of the Research Achievements |
ジェットエンジンやロケットから騒音が発生するメカニズムの研究。騒音の源になっている変動の発生場所や、その変動が衝撃波と干渉して音波を発生する様子を、従来よりも分かりやすい形で視覚的に確認することが出来た。この研究により、騒音を大幅に低減できる可能性が広がる。また、ここで開発したデータ解析手法は、間欠的かつ不規則に発生する現象をはっきりと取り出すことができるので、他の流体解析にも応用することができる。
|