• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Development of nano-pillar type multiferroic composite materials using microfabrication technique

Research Project

  • PDF
Project/Area Number 18H01724
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 26030:Composite materials and interfaces-related
Research InstitutionUniversity of Hyogo

Principal Investigator

KOBUNE MASAFUMI  兵庫県立大学, 工学研究科, 教授 (90240960)

Co-Investigator(Kenkyū-buntansha) 神田 健介  兵庫県立大学, 工学研究科, 准教授 (20446735)
菊池 丈幸  兵庫県立大学, 工学研究科, 准教授 (50316048)
Project Period (FY) 2018-04-01 – 2021-03-31
Keywordsマルチフェロイック材料 / 高温スパッタ法 / 反応性イオンエッチング / 有機金属化学気相堆積法 / ピラー型複合体薄膜 / 電気磁気電圧係数 / 電気磁気結合現象
Outline of Final Research Achievements

a-axis- and c-axis-oriented epitaxial (Bi3.25Nd0.65Eu0.10)Ti3O12 (BNEuT) thin films were deposited on the two substrates by high-temperature sputtering. By microfabricating the obtained films for the microrod shape via reactive ion etching, ferroelectric pillar films were fabricated. The fabrication of CFO/BNEuT composite films was examined by depositing a ferrimagnetic cobalt ferrite (CFO) layer in the plate and rod gaps in BNEuT films by metal organic chemical vapor deposition (MOCVD) using the above pillar films as a template. In the present study, the effects of the MOCVD time, substrate temperature, and postannealing temperature on the structural, magnetic, ferroelectric, and magnetoelectric (ME) characteristics were investigated in details. It was thus found that the CFO/BNEuT composite films using a ferroelectric pillar with a microrod morphology and an a-axis orientation exhibited the maximal ME voltage coefficient .

Free Research Field

複合材料および界面関連

Academic Significance and Societal Importance of the Research Achievements

本研究は,磁場-電気分極制御型応用に関しマイクロピラー型CFO/BNEuT複合体薄膜を通して明瞭な電気磁気結合現象を観測できることを明らかにした.強誘電体薄膜を反応性イオンエッチングによりマイクロピラー化し,その上にMOCVD法を用いて強磁性体を堆積させる手法により,高再現性を実現できた点において学術的及び社会的(産業分野)にも大いに意義がある.また,ピラーのアスペクト比を高めることにより,基板によるクランプ効果の低減がはかられ,その結果,電気磁気電圧係数が著しく向上することを実証した.この成果は本研究分野の材料性能向上のための指針となる.

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi