• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Studies on Ferroelectric Resistive-switching with Growth- and Interface- Controlled Fluorite-based Heterostructures

Research Project

  • PDF
Project/Area Number 18H01879
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 29020:Thin film/surface and interfacial physical properties-related
Research InstitutionNational Institute of Advanced Industrial Science and Technology

Principal Investigator

Yamada Hiroyuki  国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 研究グループ長 (00415762)

Project Period (FY) 2018-04-01 – 2021-03-31
Keywords強誘電トンネル接合 / 抵抗スイッチング / 不揮発性メモリ / 酸化物ヘテロ構造 / ハフニア系強誘電体 / エピタキシャル成長
Outline of Final Research Achievements

Hafnia-based ferroelectrics have attracted considerable interests owing to the high compatibility with Si CMOS process. In this project, we developed polycrystalline heterostructures consisting of ferroelectric layers of YO1.5-substitued HfO2 (YHO) or Hf0.5Zr0.5O2 (HZO), and a bottom electrode layer, on SiO2/Si substrates. We succeeded in fabricating the YHO (HZO)-based heterostructures having atomic-scale flatness and uniform thicknesses, by adopting an oxide electrode ITO and two-step post-deposition anneal. In a YHO(12 nm)/ITO heterostructure, we demonstrated ferroelectricity with remnant polarization of 13 uC/cm2, which is as large as the value observed in epitaxial thin films. We also fabricated HZO/ITO junctions having ultrathin HZO. In a Pt/HZO (2.4nm)/ITO tunnel-junction, we succeeded in observing tunnel-resistive switching ascribed to the ferroelectricity.

Free Research Field

酸化物エレクトロニクス

Academic Significance and Societal Importance of the Research Achievements

実用化しやすい強誘電材料を厚さ数nmまで薄膜化し、その薄膜をオングストロームスケールで平坦化したことにより、“電子的機構”に基づく、信頼性・安定性・書換え耐性等の高さを特徴とする新たな不揮発性メモリ「強誘電トンネル接合(FTJ)メモリ」実現への足がかかりを掴んだ。これは、近年注目されている、人間の脳機能を模した新原理コンピューティング技術で必要となる「神経模倣素子」(人工ニューロン、人工シナプス)への応用も期待される。学術面では、応用技術の開発が先行して殆ど解明されていない、蛍石型構造を持つ酸化物の多彩な薄膜成長科学・界面制御技術という基礎学理の構築に貢献した。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi