2020 Fiscal Year Final Research Report
Study on initial growth mechanism of InN under high density radial irradiation for high carrier mobility channel
Project/Area Number |
18H01890
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 30010:Crystal engineering-related
|
Research Institution | Nagoya University |
Principal Investigator |
KONDO HIROKI 名古屋大学, 低温プラズマ科学研究センター, 准教授 (50345930)
|
Co-Investigator(Kenkyū-buntansha) |
小田 修 名古屋大学, 低温プラズマ科学研究センター, 特任教授 (30588695)
堤 隆嘉 名古屋大学, 低温プラズマ科学研究センター, 助教 (50756137)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Keywords | プラズマ / ラジカル / InGaN / 分子線エピタキシー |
Outline of Final Research Achievements |
In order to clarify the growth mechanism of InN and high-In content InGaN under high-density radical irradiation, the crystal growth of InGaN under the irradiation of high-density nitrogen radical by our originally developed high-density radical source, of which density was 10 times or more higher than general plasma sources, was investigated. A high In content of 40 to 42% was achieved at a relatively high growth temperature of 447 to 590℃. The lower the mosaicity was obtained at the higher growth temperature, suggesting that the high-density nitrogen radical irradiation suppresses the decomposition and desorption of InN, and that high-temperature growth improves crystallinity. In addition, the analysis system of depth profile by the maximum entropy method in angle-resolved X-ray photoelectron spectroscopy was established, and the change in surface structure due to alternate irradiation of ions and radicals was clarified.
|
Free Research Field |
プラズマプロセス工学
|
Academic Significance and Societal Importance of the Research Achievements |
一般的なプラズマ源と比較して10倍以上高密度な窒素ラジカルの照射による、InNの分解・脱離の抑制、高温成長の実現、結晶性向上の可能性は、高InN組成InGaNの成長手法の確立に資する重要な知見ある。また本研究で用いた分子線エピタキシー法に限らず、化学気相堆積法など他の成長手法においても高密度窒素ラジカル照射が有用であることが示唆される。また角度分解X線光電子分光法における最大エントロピー法による深さ方向分析から得られた、イオンとラジカルの交互照射に関する知見は、原子層プロセスにおけるステップ間のシナジー効果を定量的に示唆する結果であり、反応機構の理解と最適化において重要な基盤となる。
|