• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Annual Research Report

Identification of epitopes targeted by TCR-MHC pairs

Research Project

Project/Area Number 18H02430
Research InstitutionOsaka University

Principal Investigator

Standley Daron  大阪大学, 微生物病研究所, 教授 (00448028)

Project Period (FY) 2018-04-01 – 2021-03-31
KeywordsAdaptive immunity / T cell / epitope / machine learning; / structural modeling
Outline of Annual Research Achievements

We have achieved the main objective of this project: to develop a general method to predict the epitope targeted by a given T cell receptor (TCR) and major histocompatibility complex (MHC). To build a 3D model of each TCR sequence, we have developed Repertoire Builder, which can generate 10,000 antibody or TCR models in approximately 30 minutes more accurate than any other tested server (Schritt, D. et al. MSDE 2019). Next, to cluster the TCRs, we developed InterClone, which can cluster antibodies or TCRs into epitope-specific groups (Xu, Z. et al. MSDE 2019). Next, we can construct a 3D model of the TCR-epitope-MHC complex using ImmuneScape (Li, S. et al. Meth Mol Biol 2019). The final step in the pipeline is to develop a score that can distinguish true peptide epitopes from false ones. We have developed such a score and demonstrate that it dramatically out-performs the original ImmuneScape score. Using the above pipeline, we have made significant contributions to the identification of antigens involved in allergy (Takeda, K. et al. J Allergy Clin Immunol 2019), modeled antibodies involved in enhancing SARS-CoV-2 infection (Liu, Y. et al. Cell 2021), modeled CAR T cell receptors (Singh, N. et al Nat Med 2021) and modeled the self-reactive epitopes involved in neuromyelitis optica spectrum disorder (in prep). These tools are currently being applied to the identification of SARS-CoV-2 T cell epitopes in Japanese COVID-19 patients.

Research Progress Status

令和2年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和2年度が最終年度であるため、記入しない。

  • Research Products

    (5 results)

All 2021 2020

All Journal Article (4 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (1 results) (of which Invited: 1 results)

  • [Journal Article] An infectivity-enhancing site on the SARS-CoV-2 spike protein is targeted by COVID-19 patient antibodies2021

    • Author(s)
      Liu Yafei +21 +Standley Daron M.、Shioda Tatsuo、Arase Hisashi
    • Journal Title

      Cell in press

      Volume: 1 Pages: 1-1

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells2021

    • Author(s)
      Nathan Singh + 26+ Daron M Standley +6 + Marco Ruella
    • Journal Title

      Nat Med. in press

      Volume: 1 Pages: 1-1

  • [Journal Article] Methods for sequence and structural analysis of B and T cell receptor repertoires2020

    • Author(s)
      Teraguchi Shunsuke、Saputri Dianita S.、Llamas-Covarrubias Mara Anais、Davila Ana、Diez Diego、Nazlica Sedat Aybars、Rozewicki John、Ismanto Hendra S.、Wilamowski Jan、Xie Jiaqi、Xu Zichang、Loza-Lopez Martin de Jesus、van Eerden Floris J.、Li Songling、Standley Daron M.
    • Journal Title

      Computational and Structural Biotechnology Journal

      Volume: 18 Pages: 2000~2011

    • DOI

      10.1016/j.csbj.2020.07.008

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Analysis of Protein Intermolecular Interactions with MAFFT-DASH2020

    • Author(s)
      Rozewicki John、Li Songling、Katoh Kazutaka、Standley Daron M.
    • Journal Title

      Methods Mol Biol 2231

      Volume: 1 Pages: 163~177

    • DOI

      10.1007/978-1-0716-1036-7_11

  • [Presentation] "Toward high-throughput antibody-antigen modeling"2020

    • Author(s)
      Daron Standley
    • Organizer
      Kobe Univ. (The Basis for Computational Life Science 7)
    • Invited

URL: 

Published: 2021-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi