• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Development of optimal design for 'living' continuous body vibration with phase reduction method

Research Project

  • PDF
Project/Area Number 18H03205
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 60020:Mathematical informatics-related
Research InstitutionThe University of Electro-Communications

Principal Investigator

Tanaka Hisaaki  電気通信大学, 大学院情報理工学研究科, 准教授 (20334584)

Co-Investigator(Kenkyū-buntansha) 関屋 大雄  千葉大学, 大学院工学研究院, 教授 (20334203)
畔上 秀幸  名古屋大学, 情報学研究科, 教授 (70175876)
河村 洋史  国立研究開発法人海洋研究開発機構, 付加価値情報創生部門(数理科学・先端技術研究開発センター), グループリーダー (90455494)
竹内 謙善  香川大学, 創造工学部, 講師 (90911686)
Project Period (FY) 2018-04-01 – 2022-03-31
KeywordsMEMS / 注入同期 / 振動工学 / 最適化理論
Outline of Final Research Achievements

Injection-locking of nonlinear oscillators to an external periodic forcing is a fundamental phenomenon which adjusts their frequencies to that of an external forcing. Such injection-locking enables to stabilize the frequency of the oscillator, and it has a long history and produces a large variety of applications. In our research, we develop a method for maximizing the frequency range of an external forcing sustaining the injection-locked mode (i.e., locking range or synchronization band), based on our newely developed theory for self-oscillating MEMS. More precisely, we have enabled a direct simulation of injection-locked MEMS through interacting two reliable softwares of Abaqus and Dymola. Further, inspired by these precise simulations, a shape optimigation theory has been developed for a self-oscillating continuous body including MEMS.

Free Research Field

数理情報学

Academic Significance and Societal Importance of the Research Achievements

N/MEMSでは, 最近10年間で強制振動系 (共振器) から自励振動系 (発振器) へ研究がシフトし, この自励振動を安定に実現するため, 注入同期・相互同期現象の利用が現在盛んである. その理由は, この現象を利用することにより余分な回路を必要とせず, 最もシンプルかつ省電力な定常振動の安定化・周波数制御が可能となるからである. ところが, 注入同期回路設計のための系統的設計論が存在せず, 現場では経験や勘に頼らざるを得ない状況であった. 本研究はこの状況を打開し, 最適化理論を開拓することに成功した.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi