• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Development of eigenvalue analysis methods using a quadrature-type eigensolver with nonlinear transformations

Research Project

  • PDF
Project/Area Number 18H03250
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 60100:Computational science-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Sakurai Tetsuya  筑波大学, システム情報系, 教授 (60187086)

Co-Investigator(Kenkyū-buntansha) 二村 保徳  筑波大学, システム情報系, 助教 (30736210)
今倉 暁  筑波大学, システム情報系, 准教授 (60610045)
保國 惠一  筑波大学, システム情報系, 助教 (90765934)
Project Period (FY) 2018-04-01 – 2021-03-31
Keywords固有値解析 / 積分型固有値解法 / 非線形変換
Outline of Final Research Achievements

In this research, we developed a method for improving the performance of the quadrature-type parallel eigenvalue solver through nonlinear variable transformation. Compared to conventional sequential eigenvalue solvers, quadrature-eigenvalue solvers have high parallelism and can solve nonlinear eigenvalue problems with the same algorithm as linear eigenvalue problems. On the other hand, its performance is affected by the distribution of eigenvalues in the neighborhood of the target domain. We proposed a method to transform the linear eigenvalue problems to the corresponding nonlinear eigenvalue problems by using nonlinear variable transformations. The obtained nonlinear eigenvalue problem is solved using the nonlinear version of the quadrature-type eigenvalue solver. The performance of the proposed method is theoretically analyzed, and the effectiveness of the proposed method is confirmed by applying the developed method to several applications.

Free Research Field

数値解析学

Academic Significance and Societal Importance of the Research Achievements

本研究課題において、線形固有値問題を非線形固有値問題に帰着させて解くこれまでにない新規の方法論を提案し、その手法の構築と評価を行ったことが学術的な意義である。大規模な固有値解析は、素粒子や原子核などの基礎物理分野、ナノマテリアルやフォトニック結晶の応用物理分野、自動車・建築物の設計、新素材・デバイスの開発、流体・振動解析、創薬、ネットワーク・データ解析など、幅広いシミュレーションでの応用がある。本課題で開発・拡張を進めた超並列な固有値解法が活用されることで、幅広い分野の科学技術シミュレーション・データ解析応用の発展に寄与する。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi