• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Research on Active Mining Process for Intelligent Hospital Information System

Research Project

  • PDF
Project/Area Number 18H03289
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionShimane University

Principal Investigator

Tsumoto Shusaku  島根大学, 学術研究院医学・看護学系, 教授 (10251555)

Co-Investigator(Kenkyū-buntansha) 平野 章二  島根大学, 学術研究院医学・看護学系, 准教授 (60333506)
河村 敏彦  島根大学, 学術研究院医学・看護学系, 准教授 (70435494)
Project Period (FY) 2018-04-01 – 2021-03-31
Keywordsデータマイニング / ガイドライン / 診療支援システム / 医用人工知能
Outline of Final Research Achievements

This project aims at a system for medical experts' decision support based on the clinical guidelines to achieve a intelligent hospital information system (HIS). The research achievements were follows: First, as active information gathering, we implemented an algorithm to evaluate clinical scores and nursing necessity measures from the inputs inside and outside HIS. Secondly, as user-oriented data mining, we applied temporal data mining methods for analysis of waiting time of outpatient clinic, induction of clinical pathways from HIS data, and extraction of knowledge from discharge summaries. Finally, as active user reaction, we developed a prototype decision support system, including intelligent support of issuance of orders based on the clinical guidelines. The system works well for at least one domain,detection of de novo hepatitis and we finally developed the generalized prototype system. However, we have encountered the difficulties in maintaining the masters in HIS.

Free Research Field

知能情報学

Academic Significance and Societal Importance of the Research Achievements

Evidence-based Medicine (EBM)の浸透により,診療ガイドラインは概ねアルゴリズム化している。薬剤投与,検査等の指示と実行結果がすべて病院情報システムに保存していることから,これらのアルゴリズムを実装することで,よりEBMに沿った診療支援が行えるようになる。また本システムの開発のため,頻出パターンマイニング,オーダー歴からのクリニカルパスの推定,退院時要約(自然文)の解析等,病院のデータを活用,解析する方法も研究・開発できた。プロトタイプシステムはほぼ完成し,一部は病院情報システムに実装したが,これらのシステムの稼働についての問題点も明らかにすることができた。

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi