2020 Fiscal Year Final Research Report
Bayesian Modeling for Understanding Systems of Immune Responses and Revealing Immune Escape Mechanisms
Project/Area Number |
18H03328
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 62010:Life, health and medical informatics-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Imoto Seiya 東京大学, 医科学研究所, 教授 (10345027)
|
Co-Investigator(Kenkyū-buntansha) |
中川 英刀 国立研究開発法人理化学研究所, 生命医科学研究センター, チームリーダー (50361621)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Keywords | ベイズモデル / 免疫システム / HLA / ネオ抗原 |
Outline of Final Research Achievements |
The following results were obtained regarding the development of data analysis techniques for understanding the complex human immune system that monitors cancer immunity. Although the accuracy of HLA genotyping from whole genome sequencing data was extremely low, we achieved 98% accuracy by constructing a new Bayesian statistical model. Furthermore, we have developed a method to accurately identify new HLA genotypes and somatic mutations in HLA genes that are not registered in the database. In addition, we have developed and released an application named Neoantimon for the identification of somatic neoantigens that bind to patient HLA and are presented to T cells. Based on these technologies, we have developed a new index, IEI, which can be used to analyze how each patient's cancer tissue has been subjected to selective pressure from the immune system.
|
Free Research Field |
バイオインフォマティクス
|
Academic Significance and Societal Importance of the Research Achievements |
開発したデータ解析技術群は、大型計算機環境を必要とするが、研究代表者が所属するヒトゲノム解析センターのスパコンSHIROKANE上に実装されているため、多くの研究者が免疫ゲノム解析を行うことが可能となり、研究分野の活性化に繋がる。開発した技術群は、患者の癌の免疫学的と級長を炙り出すことが出来る。免疫細胞が浸潤した体細胞変異の多い癌は免疫チェックポイントインヒビターなどの免疫療法が有効であることが知られている。一方、そのような免疫療法が有効ではない癌の特徴を開発した方法を駆使しその共通性を見出すことで、難治癌に対する新しい免疫学的な治療法を開発するシーズになることが期待される。
|