• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Annual Research Report

無限次元表現の分岐則と大域解析

Research Project

Project/Area Number 18H03669
Research InstitutionThe University of Tokyo

Principal Investigator

小林 俊行  東京大学, 大学院数理科学研究科, 教授 (80201490)

Co-Investigator(Kenkyū-buntansha) 関口 英子  東京大学, 大学院数理科学研究科, 准教授 (50281134)
Project Period (FY) 2018-04-01 – 2023-03-31
Keywords解析学 / 幾何学 / リー群 / 分岐則 / 不連続群
Outline of Annual Research Achievements

当該研究代表者が主導してきた「分岐則の理論」「緩増加等質空間の理論」のプロジェクトを海外の共同研究者等と協力して研究を進めた。以下で本年度の主要な結果を述べる。
(1)(分岐則の重複度に関する有界性定理) 簡約リー群の2つの無限次元既約表現のテンソル積の重複度は無限になりうる。より一般に、対称対に関して無限次元の既約表現を制限するとその重複度は有限とは限らない。当該研究者は、従前の研究で、この重複度の有限性が常に保証されるような対称対を超局所解析を用いて特徴づけ(小林-大島 Advances in Mathematics 2013), さらにそのような対称対を完全に分類した(小林-松木, Transformation Group 2014).一方、Weil表現に関するテータ対応のように、Gelfand-Kirillov次元が小さい表現については重複度が有界にとどまる可能性がある。本研究では、従前の結果を精密化するため、表現πと対称対(G,H)に関する条件として、いつ重複度が有界性をもつかについての種々の定理を証明した(第一論文)
(2)(緩増加等質空間の判定条件)二乗可積分函数全体のなすヒルベルト空間上に定義されたユニタリ表現が緩増加となる等質空間G/Hを緩増加等質空間という。Gが簡約リー群でHがその代数的部分群の場合に等質空間G/Hがいつ緩増加性になるかの判定条件を発見しそれを論証した。その手法は、研究代表者と海外の共同研究者が開発した非可換力学系手法に加え、2つの群作用を持つ測度空間にdominanceという半順序を導入し、その基本的性質をユニタリ表現論を用いて解明するという新しいアイディアによるものである(第2論文)。

Research Progress Status

令和4年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和4年度が最終年度であるため、記入しない。

  • Research Products

    (20 results)

All 2023 2022 Other

All Int'l Joint Research (2 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results) Presentation (13 results) (of which Int'l Joint Research: 12 results,  Invited: 13 results) Remarks (1 results) Funded Workshop (2 results)

  • [Int'l Joint Research] IHES/University of Reims(フランス)

    • Country Name
      FRANCE
    • Counterpart Institution
      IHES/University of Reims
  • [Int'l Joint Research] Cornell University(米国)

    • Country Name
      U.S.A.
    • Counterpart Institution
      Cornell University
  • [Journal Article] Bounded Multiplicity Theorems for Induction and Restriction2022

    • Author(s)
      Toshiyuki Kobayashi
    • Journal Title

      Journal of Lie Theory

      Volume: 32 Pages: 197--238

    • Peer Reviewed
  • [Journal Article] Tempered homogeneous spaces II2022

    • Author(s)
      Yves Benoist, Toshiyuki Kobayashi
    • Journal Title

      The University of Chigaco Press

      Volume: NA Pages: 213-245

    • Peer Reviewed / Int'l Joint Research
  • [Presentation] A Generating Operator for Rankin-Cohen Brackets.2023

    • Author(s)
      Toshiyuki Kobayashi
    • Organizer
      Nordic Congress of Mathematicians with European Mathematical Society
    • Int'l Joint Research / Invited
  • [Presentation] A Generating Operator for Rankin-Cohen Brackets2023

    • Author(s)
      Toshiyuki Kobayashi
    • Organizer
      International Workshop Lie Theory and Its Applications in Physics (LT-15).
    • Int'l Joint Research / Invited
  • [Presentation] Harish-Chandra's Admissibility Theorem and Beyond2023

    • Author(s)
      Toshiyuki Kobayashi
    • Organizer
      Harish-Chandra Centenary Celebrations 2023, HRI in Allahabad, India
    • Int'l Joint Research / Invited
  • [Presentation] Analysis on Homogeneous Spaces2023

    • Author(s)
      Toshiyuki Kobayashi
    • Organizer
      Noncommutative Geometry and Analysis on Homogeneous Spaces. Williamsburg, USA
    • Int'l Joint Research / Invited
  • [Presentation] On the Crossroads of Global Analysis and Representation Theory.2022

    • Author(s)
      Toshiyuki Kobayashi
    • Organizer
      Geometry, Analysis, and Representation Theory of Lie Group, The University of Tokyo
    • Int'l Joint Research / Invited
  • [Presentation] Properness criterion. Proper Actions and Representation Theory. I.2022

    • Author(s)
      Toshiyuki Kobayashi
    • Organizer
      Satellite conference of the virtual ICM 2022:Representations and Characters---Revisiting the Works of Harish-Chandra and Andre Weil, Singapore
    • Int'l Joint Research / Invited
  • [Presentation] Discontinuous group, Weil's local rigidity, and deformation. Proper Actions and Representation Theory. II.2022

    • Author(s)
      Toshiyuki Kobayashi
    • Organizer
      Satellite conference of the virtual ICM 2022:Representations and Characters---Revisiting the Works of Harish-Chandra and Andre Weil, Singapore
    • Int'l Joint Research / Invited
  • [Presentation] Tempered Subgroups and tempered homogeneous spaces. Proper Actions and Representation Theory. IIII.2022

    • Author(s)
      Toshiyuki Kobayashi
    • Organizer
      Satellite conference of the virtual ICM 2022:Representations and Characters---Revisiting the Works of Harish-Chandra and Andre Weil, Singapore
    • Int'l Joint Research / Invited
  • [Presentation] Tempered Homogeneous Spaces.2022

    • Author(s)
      Toshiyuki Kobayashi
    • Organizer
      Symmetry in Geometry and Analysis: In honor of Toshiyuki Kobayashi, France
    • Int'l Joint Research / Invited
  • [Presentation] Schrodinger model of minimal representations and branching problems2022

    • Author(s)
      Toshiyuki Kobayashi
    • Organizer
      Minimal Representations and Theta Correspondence: In honor of Gordan Savin for his 60th birthday. ESI, Austria
    • Int'l Joint Research / Invited
  • [Presentation] ''Visible actions” and ''only one” --- Geometric structure that produces multiplicity-free representations.2022

    • Author(s)
      Toshiyuki Kobayashi
    • Organizer
      The 30th Anniversary Ceremony of the Foundation of the Graduate School of Mathematical Sciences. The University of Tokyo
    • Invited
  • [Presentation] Basic Questions in Group-Theoretic Analysis on Manifolds2022

    • Author(s)
      Toshiyuki Kobayashi
    • Organizer
      MATH-IMS Joint Pure Mathematics Colloquium Series. The Chinese University of Hong Kong
    • Int'l Joint Research / Invited
  • [Presentation] Proper Actions and Representation Theory I-IV2022

    • Author(s)
      Toshiyuki Kobayashi
    • Organizer
      Representation Theory & Noncommutative Geometry, USA
    • Int'l Joint Research / Invited
  • [Remarks] Home Page of Toshiyuki Kobayashi

    • URL

      https://www.ms.u-tokyo.ac.jp/~toshi/index.html

  • [Funded Workshop] Geometry, Analysis, and Representation Theory of Lie Groups2022

  • [Funded Workshop] Symmetry in Geometry and Analysis2022

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi