• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Annual Research Report

Construction of feature extraction method for turbulence big data by machine learning

Research Project

Project/Area Number 18H03758
Research InstitutionKeio University

Principal Investigator

深潟 康二  慶應義塾大学, 理工学部(矢上), 教授 (80361517)

Co-Investigator(Kenkyū-buntansha) 山本 誠  東京理科大学, 工学部機械工学科, 教授 (20230584)
長谷川 洋介  東京大学, 生産技術研究所, 准教授 (30396783)
岩本 薫  東京農工大学, 工学(系)研究科(研究院), 教授 (50408712)
塚原 隆裕  東京理科大学, 理工学部機械工学科, 准教授 (60516186)
福島 直哉  東海大学, 工学部, 特任講師 (80585240)
守 裕也  電気通信大学, 大学院情報理工学研究科, 准教授 (80706383)
Project Period (FY) 2018-04-01 – 2021-03-31
Keywords流体力学 / 乱流 / ビッグデータ / 機械学習 / 低次元モデル
Outline of Annual Research Achievements

前年度に引き続き,流れ場への機械学習への応用を試み,主に以下の成果を得た.
(1)畳み込みニューラルネットワーク(CNN)を用いて,空間低解像度の情報から高解像度場を再構築する流れ場の超解像技術を提案した.これを二次元物体周り非定常流れおよび二次元減衰乱流場に適用し,機械学習を用いた超解像では従来手法より高精度に高解像度場が再構築できることを示した.
(2)CNNオートエンコーダを改変したネットワークを用いて非定常流れ場の低次元モデル化および非線形モード分解を行う手法を提案した.これを二次元円柱周りの非定常流れに適用し,分解された非線形モードについての考察を行った結果,機械学習を用いて得られた非線形モードには複数の線形モードが秩序を持って内包されていることが分かった.
(3)濃度乱流拡散での点源位置推定を目標として,直接数値計算で作成した教師データをCNNに学習させた.小さいシュミット数のためか,前年度の実験実証ほどの予測性能が得られない結果となった.また,多層パーセプトロンによる粘弾性流体構成方程式の代理モデル構築を図り,チャネル乱流では壁近傍での予測精度が高いことを示した.
(4)壁乱流の直接数値計算(DNS)データベースにディープラーニングを適用し,計測可能な壁面情報から乱流場の速度・圧力を学習,予測させ,それらの予測における壁面せん断応力,壁面圧力の有効性を調査した.また,壁面近傍の速度情報を学習しそれ基づいた対向制御による壁乱流制御のDNSを行い,入力データに瞬時のスパン方向の壁面せん断応力を用いることで摩擦抵抗低減が得られることがわかった.
また,浮力が作用するチャネル乱流を対象として壁面振動制御の有効性を調査し,不安定成層状態において壁面振動が流体抵抗低減効果と熱輸送の非相似性を生じることを明らかにするなど,本研究の位置づけと更なる発展に必要な研究を行った.

Current Status of Research Progress
Current Status of Research Progress

1: Research has progressed more than it was originally planned.

Reason

非定常流れ場に対する非線形低次元モードの抽出のみならずその物理的解釈にも成功し,計画当初に想定していなかった流体力学の諸問題への機械学習の適用もいくつも遂行でき,さらには国際会議発表や国際誌への論文発表も当初の計画以上にできたため.

Strategy for Future Research Activity

2020年度は,まずこれまでに明らかになってきた機械学習に基づく流れ場の特徴抽出手法の問題点,即ち高自由度場への適用を可能とすべく,ネットワーク構造の改良を行い,その上で,2019年度に引き続き実験データや乱流場への機械学習の適用を進める.
また,類似の研究が世界的なブームになっているため,本研究でこれまでに得られた数々の研究成果を引き続き複数の論文として国際誌に投稿し,世界中の他の研究チームからのフィードバックを得ることにより,研究内容の更なる充実を図る.

  • Research Products

    (64 results)

All 2020 2019 Other

All Int'l Joint Research (2 results) Journal Article (13 results) (of which Int'l Joint Research: 6 results,  Peer Reviewed: 6 results,  Open Access: 9 results) Presentation (47 results) (of which Int'l Joint Research: 18 results,  Invited: 13 results) Remarks (2 results)

  • [Int'l Joint Research] UCLA/Johns Hopkins University/Brown University(米国)

    • Country Name
      U.S.A.
    • Counterpart Institution
      UCLA/Johns Hopkins University/Brown University
  • [Int'l Joint Research] Max Planck Institute HLR(ドイツ)

    • Country Name
      GERMANY
    • Counterpart Institution
      Max Planck Institute HLR
  • [Journal Article] Nonlinear mode decomposition with convolutional neural networks for fluid dynamics2020

    • Author(s)
      Takaaki Murata, Kai Fukami, Koji Fukagata
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 882 Pages: A13

    • DOI

      10.1017/jfm.2019.822

    • Peer Reviewed
  • [Journal Article] Dissimilarity between turbulent heat and momentum transfer inducedby a streamwise travelling wave of wall blowing and suction2020

    • Author(s)
      Arjun J. Kaithakkal, Yukinori Kametani, Yosuke Hasegawa
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 886 Pages: A29

    • DOI

      10.1017/jfm.2019.1045

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] 時系列壁面計測情報に基づくチャンネル乱流場の状態推定2020

    • Author(s)
      劉 竺辰,長谷川 洋介
    • Journal Title

      生産研究

      Volume: 72 (1) Pages: 5-8

    • DOI

      10.11188/seisankenkyu.72.5

    • Open Access
  • [Journal Article] 大スケール最適制御入力によるチャネル乱流の抵抗低減2020

    • Author(s)
      伊藤 宗嵩,長谷川 洋介
    • Journal Title

      生産研究

      Volume: 72 (1) Pages: 9-13

    • DOI

      10.11188/seisankenkyu.72.9

    • Open Access
  • [Journal Article] Budget analysis of dissimilarity between turbulent heat and momentum transfer in wall turbulence2020

    • Author(s)
      Arjun J. Kaithakkal, Yukinori Kametani, Yosuke Hasegawa
    • Journal Title

      生産研究

      Volume: 72 (1) Pages: 15-18

    • DOI

      10.11188/seisankenkyu.72.15

    • Open Access
  • [Journal Article] Super-resolution reconstruction of turbulent flows with machine learning2019

    • Author(s)
      Kai Fukami, Koji Fukagata, Kunihiko Taira
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 870 Pages: 106-120

    • DOI

      10.1017/jfm.2019.238

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Spatial Reconstruction of steady scalar sources from remote measurements in turbulent flow2019

    • Author(s)
      Qi Wang, Yosuke Hasegawa, Tamer Zaki
    • Journal Title

      Journal of Fluid Mechanics

      Volume: 870 Pages: 316-352

    • DOI

      10.1017/jfm.2019.241

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Synthetic turbulent inflow generator using machine learning2019

    • Author(s)
      Kai Fukami, Yusuke Nabae, Ken Kawai, Koji Fukagata
    • Journal Title

      Physical Review Fluids

      Volume: 4 Pages: 064603

    • DOI

      10.1103/PhysRevFluids.4.064603

    • Peer Reviewed
  • [Journal Article] Topology optimization of electrolyte-electrode interfaces of solid oxide fuel cells using the adjoint method2019

    • Author(s)
      Junya Onishi, Yukinori Kametani, Yosuke Hasegawa, Naoki Shikazono
    • Journal Title

      Journal of the Electrochemical Society

      Volume: 166 Pages: F876-F888

    • DOI

      10.1149/2.0031913jes

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] 機械学習を用いた円柱周り流れのレイノルズ数依存性の予測2019

    • Author(s)
      長谷川 一登,村田 高彬,深見 開,深潟 康二
    • Journal Title

      ながれ

      Volume: 38 Pages: 81-84

    • Open Access
  • [Journal Article] 壁乱流制御の効率的最適化に向けた機械学習の応用2019

    • Author(s)
      光石 暁彦,志村 敬彬,岩本 薫
    • Journal Title

      ながれ

      Volume: 38 Pages: 329-336

  • [Journal Article] 2次元流れ場への機械学習超解像の応用2019

    • Author(s)
      深見 開,深潟 康二,平 邦彦
    • Journal Title

      ながれ

      Volume: 38 Pages: 395-398

    • Open Access / Int'l Joint Research
  • [Journal Article] 毛細血管網の分岐形態が微小循環の輸送特性に与える影響2019

    • Author(s)
      亀谷 幸憲,Fatemeh Mirzapourshafiyi,中山 雅敬,長谷川 洋介
    • Journal Title

      ながれ

      Volume: 38 Pages: 411-414

    • Open Access / Int'l Joint Research
  • [Presentation] 畳み込みニューラルネットワークの流体解析への応用2020

    • Author(s)
      深潟 康二
    • Organizer
      アドバンスソフト「機械学習と流体シミュレーションセミナー」
    • Invited
  • [Presentation] Turbulent friction drag reduction: From feedback to predetermined, and feedback again2019

    • Author(s)
      Koji Fukagata
    • Organizer
      5th Symposium on Fluid-Structure-Sound Interactions and Control (FSSIC2019)
    • Invited
  • [Presentation] Flow control and machine learning studies at Keio Fukagata Lab2019

    • Author(s)
      Koji Fukagata
    • Organizer
      Mechanical and Aerospace Engineering Department Seminars, Thermo Fluids Series, UCLA
    • Invited
  • [Presentation] 乱流シミュレーションの基礎(+乱流制御,機械学習)2019

    • Author(s)
      深潟 康二
    • Organizer
      COMSOL Days 流体セミナー
    • Invited
  • [Presentation] 乱流および非定常層流の機械学習2019

    • Author(s)
      深潟 康二
    • Organizer
      大阪大学 数理・データ科学セミナー 数理モデルセミナーシリーズ 第21回
    • Invited
  • [Presentation] 乱流解析への機械学習の応用2019

    • Author(s)
      深潟 康二
    • Organizer
      第65回理論応用力学講演会・第22回土木学会応用力学シンポジウム
    • Invited
  • [Presentation] 畳み込みニューラルネットワークを用いた流れ場の回帰2019

    • Author(s)
      深潟 康二
    • Organizer
      第47回可視化情報シンポジウム
    • Invited
  • [Presentation] 乱流の制御と機械学習2019

    • Author(s)
      深潟 康二
    • Organizer
      流体若手夏の学校2019
    • Invited
  • [Presentation] 乱流の機械学習における最近の動向2019

    • Author(s)
      深潟 康二
    • Organizer
      日本流体力学会年会2019
    • Invited
  • [Presentation] 乱流の機械学習と制御2019

    • Author(s)
      深潟 康二
    • Organizer
      第3回CAEワークショップ
    • Invited
  • [Presentation] 機械学習技術の流体解析への応用2019

    • Author(s)
      深潟 康二
    • Organizer
      自動車技術会第20回流体技術部門委員会
    • Invited
  • [Presentation] Adjoint-based olfactory search algorithm in turbulent environments2019

    • Author(s)
      Yosuke Hasegawa
    • Organizer
      International Workshop on Data-driven Modeling and Optimization in Fluid Mechanics
    • Int'l Joint Research
  • [Presentation] 乱流現象 vs 機械学習2019

    • Author(s)
      塚原 隆裕
    • Organizer
      Prometech Simulation Conference (PSC2019) & GPU Computing Workshop for Advanced Manufacturing (GPU2019)
    • Invited
  • [Presentation] 乱流を機械学習:粘弾性流体乱流の代理モデルと乱流物質輸送の拡散源推定2019

    • Author(s)
      塚原 隆裕
    • Organizer
      ポスト「京」重点課題8・重点課題6 第3回HPCものづくり統合ワークショップ
    • Invited
  • [Presentation] Image-based super-resolution analysis with machine learning for two-dimensional turbulence2019

    • Author(s)
      Kai Fukami, Koji Fukagata, Kunihiko Taira
    • Organizer
      The 13th Southern California Flow Physics Symposium (SoCal Fluids XIII)
  • [Presentation] Data-driven reduced order modeling of flows around two-dimensional bluff bodies of various shapes2019

    • Author(s)
      Kazuto Hasegawa, Kai Fukami, Takaaki Murata, Koji Fukagata,
    • Organizer
      The ASME-JSME-KSME Joint Fluids Engineering Conference 2019
    • Int'l Joint Research
  • [Presentation] CNN-SINDy based reduced order modeling of unsteady flow fields2019

    • Author(s)
      Takaaki Murata, Kai Fukami, Koji Fukagata
    • Organizer
      The ASME-JSME-KSME Joint Fluids Engineering Conference 2019
    • Int'l Joint Research
  • [Presentation] Resolvent analysis of turbulent friction drag reduction by manipulation of mean velocity profile2019

    • Author(s)
      Riko Uekusa, Aika Kawagoe, Yusuke Nabae, Koji Fukagata
    • Organizer
      The ASME-JSME-KSME Joint Fluids Engineering Conference 2019
    • Int'l Joint Research
  • [Presentation] Prediction of Drag Reduction Effect of Pulsating Control in Turbulent Pipe Flow by Machine Learning2019

    • Author(s)
      Wataru Kobayashi, Takaaki Shimura, Akihiko Mitsuishi, Kaoru Iwamoto, Akira Murata
    • Organizer
      The ASME-JSME-KSME Joint Fluids Engineering Conference 2019
    • Int'l Joint Research
  • [Presentation] Predictability study of viscoelastic turbulent channel flow using deep learning2019

    • Author(s)
      Atsushi Nagamachi, Takahiro Tsukahara
    • Organizer
      The ASME-JSME-KSME Joint Fluids Engineering Conference 2019
  • [Presentation] Super-resolution analysis with machine learning for low-resolution flow data2019

    • Author(s)
      Kai Fukami, Koji Fukagata, Kunihiko Taira
    • Organizer
      11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
    • Int'l Joint Research
  • [Presentation] Influence of curvature on drag reduction by opposition control in turbulent flow along a thin cylinder2019

    • Author(s)
      Shota Hara, Hiroya Mamori, Takeshi Miyazaki
    • Organizer
      11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11)
    • Int'l Joint Research
  • [Presentation] Adjoint-based shape optimization of heat transfer surfaces in turbulent flows with DNS-RANS hybrid approach2019

    • Author(s)
      Yukinori Kametani, Yosuke Hasegawa
    • Organizer
      The 7th Asian Symposium on Computational Heat Transfer and Fluid Flow 2019 (ASCHT2019)
    • Int'l Joint Research
  • [Presentation] Numerical study on Hemodynamics of brain vasculature in eartly ebrafish life2019

    • Author(s)
      Minglang Yin, Xiaoning Zheng, Ansel Blumers, Mitsuho Nakakura, Hiroyuki Nakajima, Yosuke Hasegawa, Geroge Karniadakis
    • Organizer
      Biomedical Engineering Society 2019 (BMES2019)
    • Int'l Joint Research
  • [Presentation] Space-time recovery of high-resolution turbulent flow fields with machine learning based super resolution2019

    • Author(s)
      Kai Fukami, Koji Fukagata, Kunihiko Taira
    • Organizer
      72nd Annual Meeting of the APS Division of Fluid Dynamics
  • [Presentation] Comparison of Multi-scale Models for Blood Flow in Zebrafish Brain2019

    • Author(s)
      Minglang Yin, Xiaoning Zheng, Ansel Blumers, Mitsuho Nakakura, Hiroyuki Nakajima, Yosuke Hasegawa, Geroge Karniadakis
    • Organizer
      72nd Annual Meeting of the APS Division of Fluid Dynamics
  • [Presentation] Quantitative contribution of laminar, turbulence and secondary flow to velocity and temperature in rhombic ducts2019

    • Author(s)
      Naoya Fukushima
    • Organizer
      72nd Annual Meeting of the APS Division of Fluid Dynamics
  • [Presentation] Suppression of vortex shedding in flow around a square cylinder by suboptimal control2019

    • Author(s)
      Yusuke Nabae, Yosuke Fujita, Koji Fukagata
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Int'l Joint Research
  • [Presentation] Resolvent analysis for dissimilar control in turbulent channel flow2019

    • Author(s)
      Riko Uekusa, Aika Kawagoe, Yusuke Nabae, Koji Fukagata
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Int'l Joint Research
  • [Presentation] A machine-learned turbulence generator for the channel flow2019

    • Author(s)
      Kai Fukami, Yusuke Nabae, Ken Kawai, Koji Fukagata
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Int'l Joint Research
  • [Presentation] Adjoint-based optimization of heat transfer surface in latent heat thermal storage system2019

    • Author(s)
      Yukinori Kametani, Takumi Yuasa, Kei Matsumoto, Takahiro Shoda, Makoto Ishii, Yosuke Hasegawa
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Int'l Joint Research
  • [Presentation] Experimental study on evaporation process and particle sedimentation in pendant droplets2019

    • Author(s)
      Shun Tamura, Hanzhi Wang, Takahiro Tsukahara, Takayuki Osawa, Yosuke Hasegawa
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Int'l Joint Research
  • [Presentation] Optimal large-scale control input for drag redcuction in turbulent channel flow2019

    • Author(s)
      Toshitaka Itoh, Yosuke Hasegawa
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Int'l Joint Research
  • [Presentation] Turbulent flow estimation based on wall measurements by using machine learning techniques2019

    • Author(s)
      Zhuchen Liu, Yosuke Hasegawa
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Int'l Joint Research
  • [Presentation] Decomposition of Friction Drag and Heat Transfer in Pulsating Turbulent Pipe Flow2019

    • Author(s)
      Ryohei Yamaguchi, Akihiko Mitsuishi, Takaaki Shimura, Kaoru Iwamoto, Akira Murata
    • Organizer
      The 2nd Pacific Rim Thermal Engineering Conference (PRTEC2019)
    • Int'l Joint Research
  • [Presentation] Influence of phase difference of spanwise wall oscillation for turbulent channel flow2019

    • Author(s)
      Tomonari Harada, Koji Fukudome, Hiroya Mamori, Makoto Yamamoto
    • Organizer
      Asian Pacific Congress on Computational Mechanics 2019 (APCOM2019)
  • [Presentation] Prediction of turbulent flows from wall information with deep learning2019

    • Author(s)
      Kohei Ando, Tatsuro Hirano, Yoshihiko Yamashita, Sota Nishio, Naoya Fukushima
    • Organizer
      The Asian Pacific Congress on Computational Mechanics (APCOM2019)
    • Int'l Joint Research
  • [Presentation] 多層パーセプトロンによる粘弾性流体乱流計算に向けた代理モデルの構築2019

    • Author(s)
      塚原 隆裕,長町 厚志
    • Organizer
      第65回理論応用力学講演会・第22回土木学会応用力学シンポジウム
  • [Presentation] 2次元流れへの機械学習超解像の応用2019

    • Author(s)
      深見 開,深潟 康二,平 邦彦
    • Organizer
      日本流体力学会年会2019
  • [Presentation] 円管内脈動乱流の実験データを用いた機械学習による抵抗低減効果の予測2019

    • Author(s)
      小林,志村,光石,岩本,村田
    • Organizer
      流体力学会年会2019
  • [Presentation] 3次元チャネル乱流における機械学習超解像解析2019

    • Author(s)
      深見 開,深潟 康二,平 邦彦
    • Organizer
      日本機械学会第97期流体工学部門講演会
  • [Presentation] 深層学習による円管内脈動乱流の摩擦抵抗予測2019

    • Author(s)
      山口 僚平,光石 暁彦,志村 敬彬,岩本 薫,村田 章
    • Organizer
      日本機械学会第97期流体工学部門講演会
  • [Presentation] 円筒に沿った乱流における対抗制御を用いた抵抗低減の直接数値計算2019

    • Author(s)
      原 将太,守 裕也,宮嵜 武
    • Organizer
      日本機械学会第97期流体工学部門講演会
  • [Presentation] 機械学習に基づくデータ拡張によるPIVの精度向上2019

    • Author(s)
      森本 将生,深見 開,長谷川 一登,村田 高彬,村上 光,深潟 康二
    • Organizer
      第33回数値流体力学シンポジウム
  • [Presentation] オートエンコーダを用いたチャネル乱流の機械学習2019

    • Author(s)
      中村 太一,深見 開,長谷川 一登,村田 高彬,難波江 佑介,深潟 康二
    • Organizer
      第33回数値流体力学シンポジウム
  • [Presentation] 平行平板間乱流におけるスパン方向壁面振動制御の壁間位相差が抵抗低減効果に与える影響2019

    • Author(s)
      原田 友成,福留 功二,守 裕也,山本 誠
    • Organizer
      第33回数値流体力学シンポジウム
  • [Presentation] 深層学習による粘弾性流体チャネル乱流の代理モデル構築2019

    • Author(s)
      長町 厚志,塚原 隆裕
    • Organizer
      第33回数値流体力学シンポジウム
  • [Remarks] 機械学習による乱流ビッグデータの特徴抽出手法の構築

    • URL

      http://kflab.jp/ja/index.php?18H03758

  • [Remarks] Feature extraction for turbulence big data by ML

    • URL

      http://kflab.jp/en/index.php?18H03758

URL: 

Published: 2021-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi