2021 Fiscal Year Final Research Report
Development of novel ground-based microwave radiometer for earth science
Project/Area Number |
18H03828
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Medium-sized Section 25:Social systems engineering, safety engineering, disaster prevention engineering, and related fields
|
Research Institution | National Institute of Information and Communications Technology |
Principal Investigator |
ICHIKAWA Ryuichi 国立研究開発法人情報通信研究機構, 電磁波研究所電磁波標準研究センター, 研究マネージャー (40359055)
|
Co-Investigator(Kenkyū-buntansha) |
佐藤 晋介 国立研究開発法人情報通信研究機構, 電磁波研究所電磁波伝搬研究センター, 総括研究員 (30358981)
太田 雄策 東北大学, 理学研究科, 准教授 (50451513)
宮原 伐折羅 国土地理院(地理地殻活動研究センター), その他部局等, 技官(その他) (90825457)
小林 知勝 国土地理院(地理地殻活動研究センター), その他部局等, 研究室長 (40447991)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Keywords | 可降水量 / 超高感度ミリ波放射計 / GNSS / VLBI |
Outline of Final Research Achievements |
We have developed a wideband receiver system to apply a next-generation microwave radiometer to millimeter-wave spectroscopy for the high-resolution and high-precision monitoring of water vapor behavior. The new radiometer is suitable for not only space geodetic techniques such as very long-line baseline interferometry (VLBI) and GNSS, but also field measurements such as monitoring volcanic activities and cumulonimbus cloud generation. We have succeeded in developing a prototype of the complete receiver system, which has a wide-bandwidth feed of 16-62 GHz for measuring three frequency bands, namely, 16-32 GHz (water vapor), 28-38 GHz (liquid water), and 51-62 GHz (oxygen), although we were forced to change our schedule owing to the COVID-19 pandemic. We have also developed low-cost multi-GNSS receivers and a simulation tool to estimate tropospheric wet delays using a numerical weather model in order to evaluate the values obtained using the new radiometer.
|
Free Research Field |
宇宙測地学
|
Academic Significance and Societal Importance of the Research Achievements |
突発気象の予測や地殻変動の精密監視、火山活動の推移把握には大気中の水蒸気の時空変動把握が不可欠である。本研究では、これを高精度かつリアルタイムに検知可能な測器の開発を進めた。フィールド実証には一歩及ばなかったが、要の広帯域の信号を受信可能な受信機開発には成功し、これを要素技術とした実運用可能な測器の実現に大きく近づくことが出来た。また、この技術は電波天文学の分野にも多大な進展をもたらしうる可能性も示すことが出来、新たな科研費獲得にも繋がった。
|