2020 Fiscal Year Final Research Report
Development of all-printed and ultrafine TFT arrays based on highly layered-crystalline organic semiconductors
Project/Area Number |
18H03875
|
Research Category |
Grant-in-Aid for Scientific Research (A)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Medium-sized Section 29:Applied condensed matter physics and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
Hasegawa Tatsuo 東京大学, 大学院工学系研究科(工学部), 教授 (00242016)
|
Co-Investigator(Kenkyū-buntansha) |
東野 寿樹 国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 研究員 (30761324)
荒井 俊人 東京大学, 大学院工学系研究科(工学部), 講師 (40750980)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Keywords | 有機半導体 / 有機エレクトロニクス / 薄膜トランジスタ / プリンテッドエレクトロニクス / 銀ナノインク |
Outline of Final Research Achievements |
In this research project, we successfully manufactured very fine TFT array structures with spatial resolution as high as 400 ppi by the SuPR-NaP technique, and also invented "extended meniscus-guided coating" technique that allows to produce fairly uniform semiconductor layer on top of highly lyophobic surface of Cytop which is used as both gate dielectric layer and base layer for the SuPR-NaP technique. The technique enables to obtain printed TFTs composed of very clean semiconductor-insulator interface, and the eventually obtained devices exhibit excellent device characteristics with average mobility of 4.9 cm2/Vs and average subthreshold swing value of 67 mV which is close to the theoretical limit of the value. Additionally, we successfully developed several new excellent organic semiconductors showing high layered crystallinity, solution processability, and thermal stability. By the results as presented above, we established fundamental technology for advanced printed electronics.
|
Free Research Field |
物性物理、応用物理
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、物質科学を基盤に、有機半導体や銀ナノインク等の塗布型電子材料が持つ優れた材料ポテンシャルを最大限に活用し、古代から長い年月とともに進化してきた経験集約型の印刷技術の限界を突破し、今後のプリンテッドエレクトロニクスの基盤となる顕著な成果が得られた。特に、従来にない超高急峻なスイッチング特性を示すTFTの全塗布による開発に成功し、これにより既存技術では困難な、軽量・大面積・フレキシブルなデバイス製造技術の確立と、これを起点とする多彩なヒューマンインターフェースデバイスの開発・普及などにつながることが期待される。
|