• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of single nano materials based on quantum beam and data science

Research Project

  • PDF
Project/Area Number 18H03895
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Review Section Medium-sized Section 31:Nuclear engineering, earth resources engineering, energy engineering, and related fields
Research InstitutionOsaka University

Principal Investigator

Kozawa Takahiro  大阪大学, 産業科学研究所, 教授 (20251374)

Co-Investigator(Kenkyū-buntansha) 岡本 一将  大阪大学, 産業科学研究所, 助教 (10437353)
室屋 裕佐  大阪大学, 産業科学研究所, 准教授 (40334320)
大沼 正人  北海道大学, 工学研究院, 教授 (90354208)
Project Period (FY) 2018-04-01 – 2023-03-31
Keywords放射線、X線、粒子線 / 半導体超微細化 / シミュレーション工学 / 計算物理 / データ科学
Outline of Final Research Achievements

Extreme ultraviolet (EUV) radiation will be used as a light source in the high volume production of semiconductor devices. The EUV radiation with the wavelength of 13.5 nm is an ionizing radiation and capable of resolving 8 nm optical image. However, there is a barrier against the development of resist materials responding to 8 nm optical resolution. The scientific foundation for material design should be established. In this study, we clarified the reaction mechanism of EUV resists. The reactions induced in resist films by EUV were modeled for the development of simulation code based on Monte Carlo method. Using the developed simulation code, the resist patter formation was simulated for various parameter sets. Based on simulation results, the generation mechanism of stochastic defects was clarified. The defect risk indicator was also proposed. By applying the machine learning to the experimental and simulation data, the material design for single nano resists was obtained.

Free Research Field

応用ビーム工学

Academic Significance and Societal Importance of the Research Achievements

電離放射線領域の量子ビームによって誘起される初期の主要な反応は数ps以内で起こる高速反応であり測定が困難である。また、電離放射線のエネルギーを材料中で有効利用しようと考えた場合、電離放射線領域では、分子のエネルギー吸収選択性が失われ、エネルギーは溶質ではなく大部分が媒質に付与されるため、媒質のイオン化という形で付与されたエネルギーをいかにターゲット分子に伝達するかということが重要となる。このような反応系を設計するうえで、中間活性種の空間分布は本質的問題であり、本研究では、中間活性種の空間分布を含む反応機構を解明し、EUVリソグラフィの実現に貢献すると共に、次世代EUVレジストの設計指針を得た。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi