• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2020 Fiscal Year Final Research Report

Proposal of gait model related to intellect, emotion, volition and physical and its application to suspicious person detection

Research Project

  • PDF
Project/Area Number 18H04115
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Review Section Medium-sized Section 61:Human informatics and related fields
Research InstitutionOsaka University

Principal Investigator

Yagi Yasushi  大阪大学, 産業科学研究所, 教授 (60231643)

Project Period (FY) 2018-04-01 – 2021-03-31
Keywordsコンピュータビジョン / パターン認識 / バイオメトリクス
Outline of Final Research Achievements

We developed a comprehensive gait model including four factors: skill (or experience, capability), emotion (or feeling), intention (or situation), body (or age, health condition, disease, impaired body function), under a hypothesis where any gaits can be represented by a composite of the four factors We constructed several gait databases including the factors, e.g., a gait dataset with a health indicator, i.e., body composition as a body label. We then design a deep neural network which is pre-trained and fine-tuned across multiple factors and showed its effectiveness in a task of body composition estimation from a gait video. We also introduced insight obtained through the comprehensive gait model construction into surveillance applications, and developed a gait recognition framework which employs disentangled representation learning of individuality and other covariate factors similarly to we disentangled a gait into the above-mentioned four factors.

Free Research Field

視覚情報処理

Academic Significance and Societal Importance of the Research Achievements

本研究は、歩行解析の新しい枠組みの 提案であり、情報学的観点から歩行を科学する研究で学術的価値が大きい。
映像からの歩行解析では、個人認証の応用としての科学捜査支援が主流であったが、知情意体 のモデル化により、歩行映像から、個人認証だけでなく、感情、意図、健康度が同時推定できる。 このような技術は、日常歩行をカメラにより見守るだけで、異常の早期発見が可能となり、家庭、 学校、職場など人々が日常暮らす様々な場面で、防犯とメンタルケア、ヘルスケア、さらに、個 別サービスを同時に実現できる

URL: 

Published: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi