2019 Fiscal Year Annual Research Report
Large Graphs: Theory and Algorithms
Project/Area Number |
18H05291
|
Research Institution | National Institute of Informatics |
Principal Investigator |
河原林 健一 国立情報学研究所, 情報学プリンシプル研究系, 教授 (40361159)
|
Co-Investigator(Kenkyū-buntansha) |
垣村 尚徳 慶應義塾大学, 理工学部(矢上), 准教授 (30508180)
小林 佑輔 京都大学, 数理解析研究所, 准教授 (40581591)
吉田 悠一 国立情報学研究所, 情報学プリンシプル研究系, 准教授 (50636967)
|
Project Period (FY) |
2018-06-11 – 2023-03-31
|
Keywords | グラフアルゴリズム / 離散数学 / 組合せ最適化 |
Outline of Annual Research Achievements |
本研究では、基礎的なアルゴリズムに関する研究を行い、成果をあげた。以下に主要な2点を挙げる。 グラフの連結度を求める問題は、東西冷戦時代(つまり1950 年代)より組合せ最適化における中心的課題の一つである。以下の論文では、辺連結度に関して、初の「決定的」な「ほぼ」線形アルゴリズムを与えた。辺連結度に関する「非決定的」な「ほぼ」線形アルゴリズムは、Karger により2000 年に開発されていたが、「決定的」アルゴリズムは長年未解決であった。本論文はその最終的な解決を与えている。本論文は、コンピューターサイエンス分野の最高峰の国際学術雑誌 Journal of the ACM( J. ACM) に掲載されている。またグラフの連結度を求める問題は、グラフの最小カットを求める問題に相当する。この最小カットを拡張するk-カット問題は、NP困難問題であることが知られているが、既存の近似アルゴリズムを大幅に更新した。 バンディット問題は、現在機械学習分野における一大分野であり、最悪ケースにおけるリグレット解析、および計算量の解析が主要課題である。またバンディット問題の中にも、組合せ最適化問題、オンライン線形計画化問題など、数多くのバリエーションがある。本研究では、1.バンディット組合せ的最適化問題に対して、最悪ケースにおけるリグレット損失の下界を改善。2.バンディットフィードバックを持つオンライン線形最適化問題に対して、オフライン線形最適化問題を解くオラクルを仮定したもとで、劣線形リグレットを達成しつつ効率的な(つまりオラクル呼び出し回数が少ない)アルゴリズムを与えた。3.バンディット問題のオンラインポートフォリオ版に対しても、最善のリグレットバウンドを与えた。
|
Current Status of Research Progress |
Current Status of Research Progress
1: Research has progressed more than it was originally planned.
Reason
現時点で得られている成果は、計算機科学分野の国際会議ランキングで最も信頼度が高いThe Computing Research and Education Association of Australasia (CORE)において、トップにあたるCORE A*国際会議に、11本の論文が採択され、CORE A*に次ぐランクのCORE Aには、全部で8本の論文が採択されている。CORE A* およびCORE Aにランクされる論文を20本近く過去2年弱で発表した事実は、当該研究分野で世界に十分認められる研究業績の生産性を表している。さらに計算機科学全体でトップのジャーナルであるJ.ACMに論文が採択され、計算機科学分野のトップ会議であるICALP’19のベストペーパーも獲得している。これらは、世界をリードするような研究成果である。
|
Strategy for Future Research Activity |
現在一番力を入れているのは「向き付きグラフマイナー理論」である。向きなしグラフマイナー理論が、多くのステップ(23論文、500ページ以上)が必要であったように、向き付けグラフマイナー理論も、今後多くのステップが必要であることは多くのグラフ理論研究者やアルゴリズム研究コミュニティに理解されている。現在の研究成果として、アルゴリズム分野のトップ会議に採用された2つの論文(SODA’19、SODA’20)は、向き付きグラフマイナー理論構築の途中経過の結果であるが、アルゴリズム研究コミュニティに高く評価されている。なおSODA’19はグラフマイナー論文VIIの一部、そしてSODA’20はグラフマイナー論文XIIIにあたる。グラフマイナー論文自体は、XXIIIまであり、本研究期間終了までは、XXまでの仕事が完了すると考えている。 グラフのトポロジー面を考慮したアルゴリズム開発は、STOC’19に代表されるような、曲面上に埋め込まれたグラフの解析が最も大きな課題である。STOC’19で開発した手法を踏まえ、この方向でも研究を進めたい。 また分散計算においても、当該分野の最大の研究課題である「マッチング問題」「独立点問題」に貢献したいと考えている。
|
Research Products
(14 results)