• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development and validation of task item specifications based on the CEFR Reading CDS

Research Project

  • PDF
Project/Area Number 18K00722
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 02090:Japanese language education-related
Research InstitutionTokoha University

Principal Investigator

Tani Seiji  常葉大学, 外国語学部, 教授 (80514827)

Co-Investigator(Kenkyū-buntansha) 宮崎 佳典  静岡大学, 情報学部, 教授 (00308701)
Project Period (FY) 2018-04-01 – 2023-03-31
Keywords日本語教育 / CEFR / 読解 / Can Do Statements / 例文 / 自動分類 / 問題仕様書
Outline of Final Research Achievements

The purpose of this study was to support the creation of reading comprehension tasks (passages and questions) from reading comprehension CDS (Can-Do Statements, hereafter CDS) in the Common European Framework of Reference for Languages (CEFR). Specifically, the following four points were addressed: 1) implementation of a web application that can automatically classify Japanese passgaes into the CEFR reading comprehension CDS, 2) provision of sample tasks corresponding to the CEFR reading comprehension CDS, 3) provision of additional information not described in the CEFR reading comprehension CDS, and 4) creation of specifications for support for creating tasks from the CEFR reading comprehension CDS.

The results of the research are as follows: 1) is completed, 2) and 3) are partly completed, and 4) will be created after 2) and 3) are completed.

Free Research Field

日本語教育

Academic Significance and Societal Importance of the Research Achievements

英語に比べ、日本語は基準特性(CEFRの各レベルを規定する言語特徴)に関する研究が進んでいないため、利用できる情報がCDSの記載情報以外しかなく、テストや授業で使用する読解問題(例文と質問文)を作成することは負担が大きい。そのため、日本語例文をCEFR読解CDSに自動分類できる「Webアプリケーション」の実装は、負担軽減に大いに寄与できる。また、一部ではあるが、CEFR読解CDSから実際に日本語読解問題を作成し、分析した結果、CDSには記述されていない情報も提供できるようになり、問題作成の負担軽減につながることが期待できる。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi