• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Statistical inferences for network time series models with geometrical restrictions and their applications to financial martkets

Research Project

  • PDF
Project/Area Number 18K01706
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 07060:Money and finance-related
Research InstitutionNanzan University (2021-2022)
Tokyo University of Science (2018-2020)

Principal Investigator

Takayuki Shiohama  南山大学, 理工学部, 教授 (40361844)

Project Period (FY) 2018-04-01 – 2023-03-31
Keywords方向統計学 / 金融市場分析 / ネットワークモデル / 空間統計モデル
Outline of Final Research Achievements

There is growing interest in applying statistical models and methods to the data and models that are restricted to some geometric structures of the state spaces or parameter spaces. In this research topic, we have studied various aspects of models and methods in statistical approaches in data sciences. First, we consider the performance of portfolios based on the risk-parity strategy. Second, we proposed a skew-symmetric probability distribution family and studied the proposed models' statistical properties. Thirdly, we have developed and evaluated data analysis methods with geometrical parameters and data structures, such as spatial statistical models and recommendation systems.

Free Research Field

統計学

Academic Significance and Societal Importance of the Research Achievements

本研究により, 幾何構造をもつさまざまな統計モデルの金融市場分析, 不動産市場分析, 情報サービスへの応用可能性があきらかにされた. これらの基礎研究に基づいた高度なAI手法や, データサイエンスへの展開が期待できることは大きな意義がある. また, 方向統計学における, 一連の歪対称分布の統計的性質に関する学術的成果は, 超球面上あるいは, 高度に複雑な多様体上の確率モデルの発展の基礎を与える研究成果である.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi