• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Online prediction of the numbers of visitors and shop-around movements among multiple commercial facilities within a city center using their time-series count data of incoming customers

Research Project

  • PDF
Project/Area Number 18K01904
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 07090:Commerce-related
Research InstitutionNippon Bunri University

Principal Investigator

Yamashiro Kosuke  日本文理大学, 経営経済学部, 教授 (00514150)

Co-Investigator(Kenkyū-buntansha) 斎藤 参郎  福岡大学, 公私立大学の部局等, 研究特任教授 (50111654)
岩見 昌邦  和光大学, 経済経営学部, 講師 (60629541)
Project Period (FY) 2018-04-01 – 2024-03-31
Keywords時系列分析 / 複数の商業施設入館者数日時データ / VARモデル / 人流ビッグデータ / 時系列データ予測
Outline of Final Research Achievements

In this study, we investigated the characteristics of visitor number fluctuations and the interactions among multiple commercial facilities in the central area of Fukuoka City by employing time series analysis on the visitor count data and human flow big data provided by large-scale commercial facilities. Although the development of the estimation and prediction model using the State Space Model (SSM), which was initially planned, was not completed, we were able to analyze the relationships among the visitor counts of commercial facilities by applying the Vector Autoregressive (VAR) model. As a result, we successfully elucidated the periodicity of visitor count data, the interactions among facilities, and the correlation between event occurrences and visitor numbers, thereby obtaining valuable insights. These findings are expected to contribute to the management strategies of commercial facilities and urban planning proposals, as well as have potential applications in other cities.

Free Research Field

消費者行動分析によるまちづくり

Academic Significance and Societal Importance of the Research Achievements

本研究の学術的意義は、大規模商業施設の入館者数データと人流ビッグデータを用いて、入館者数の変動特性と施設間の相互作用を明らかにし、ベクトル自己回帰モデルを適用して商業施設間の関連性を定量的に分析した点にある。
社会的意義としては、本研究の成果が商業施設の経営戦略や都市計画への提言に活用できる点が挙げられる。入館者数の変動特性や施設間の相互作用を考慮することで、効果的なマーケティング戦略の立案や最適な商業施設の配置計画が可能となり、他都市への応用も期待される。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi