• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Arithmetic, geometric and p-adic applications of multivariable modular forms

Research Project

  • PDF
Project/Area Number 18K03210
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionOsaka Metropolitan University (2022-2023)
Osaka City University (2019-2021)
Kyoto University (2018)

Principal Investigator

Yamana Shunsuke  大阪公立大学, 大学院理学研究科, 教授 (50633301)

Project Period (FY) 2018-04-01 – 2024-03-31
Keywordsモジュラー形式 / L関数 / p進L関数 / 志村多様体 / 肥田族 / 市野-池田公式 / 積分表示 / 周期積分
Outline of Final Research Achievements

(1)We construct the four-variable p-adic triple product L-functions associated to three Hida families of elliptic modular forms. As an application we prove the exceptional zero conjecture for the triple product of p-ordinary elliptic curves. (2)When the product of the central character is trivial, Atsushi Ichino proved a formula for the central value of the triple product L-series in terms of a period integral. We extend this formula to the case when the product of the central character is a quadratic character. (3)We compute the restriction of Hilbert-Eisenstein series and prove a relation between the first derivative of a certain p-adic L-function and the p-adic logarithm of a Stark-Heegner point. (4)We construct a five-variable p-adic L-function attached to Hida families on the denite unitary groups U(3) and U(2) by using the Ichino-Ikeda formula. (5)We also construct a five-variable p-adic L-function attached to Hida families on the quasi-split unitary groups U(2,1) and U(1,1).

Free Research Field

数論

Academic Significance and Societal Importance of the Research Achievements

L関数とモジュラー形式には、複素数体をp進体に取り替えた類似物も存在し、p進L関数やp進モジュラー形式と呼ばれます。p進L関数を用いて、L関数の数論的性質をp進的視点から考えることが岩澤理論です。p進数の新しい側面として複素数で離散的なパラメータがp進数では連続的となり、Eisenstein級数以外にも肥田族などp進モジュラー形式の連続族が存在し、複素変数に類似した円分変数の他に、反円分変数や連続族のパラメータを加えた多変数p進L関数など様々なタイプのp進L関数を考えられることがあります。本研究では、3重積L関数などの多変数p進L関数を構成し、その例外零点や微分値を考察しました。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi