• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Rationality problem of algebraic varieties and related topics

Research Project

  • PDF
Project/Area Number 18K03216
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionSaga University

Principal Investigator

Okada Takuzo  佐賀大学, 理工学部, 教授 (20547012)

Project Period (FY) 2018-04-01 – 2023-03-31
Keywordsファノ多様体 / del Pezzo曲面束 / 双有理剛性 / 有理性問題 / K安定性
Outline of Final Research Achievements

We study del Pezzo fibrations of degree 1 over the projective line with terminal cyclic quotient singular points of type 1/2(1,1,1), and give a non-trivial sufficient condition for them to be birationally rigid. In particular, we show that birationally rigidity can be characterized by the K-condition for del Pezzo fibrations with 1/2(1,1,1) points which are embedded into a toric P(1,1,2,3)-bundle over the projective line. Moreover, we proved birational superrigidity for some codimension 4 prime Fano 3-folds, stable irrationality of many Fano varieties, and K-stability of many Fano 3-fold weighted complete intersections.

Free Research Field

代数幾何学

Academic Significance and Societal Importance of the Research Achievements

代数多様体の有理性を判定する有理性問題は,代数幾何学において古くから研究されている重要問題である。特異点を持つdel Pezzo曲面束の有理性判定については多くのことが知られていない状況であった。del Pezzo曲面束が双有理剛的であれば非有理的であるため,本研究成果は,3次元del Pezzo 曲面束の有理性問題を着実に進展させたと言える。また,その他の結果も同様に,代数多様体の有理性問題や,3次元ファノ多様体のK安定性の研究を進展させた。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi