2021 Fiscal Year Final Research Report
The solution of Hurwitz's problem through Galois covers of algebraic curves and study on curves on K3 surfaces
Project/Area Number |
18K03228
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | Kanagawa Institute of Technology |
Principal Investigator |
Komeda Jiryo 神奈川工科大学, 公私立大学の部局等, 教授 (90162065)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Keywords | 代数曲線 / ワイエルシュトラス半群 / トーリック曲面 / K3曲面 / 2重被覆 / 3重被覆 / ガロア直線 / 数値半群 |
Outline of Final Research Achievements |
What kinds of numerical semigroups are Weierstrass? Namely, what is the condition for a numerical semigroup to be attained by a pointed algebraic curves? This problem is called Hurwitz' Problem. We studied on this problem through the ramification points of double or triple coverings. Especially, in the case where the conductor of a numerical semigroup is fixed we constructed infinite sequences of non-Weierstrass numerical semigroups, i.e., numerical semigroups which cannot be attained by any pointed curves. We studied on pointed algebraic curves on algebraic surfaces. The research objects of the surfaces are the projective plane, toric surfaces and K3 surfaces. The Weierstrass semigroups of pointed algebraic curves on these surfaces were calculated and characterized. Moreover, we gave examples of Weierstrass numerical semigroups which cannot be attained by any pointed curves on these surfaces. Especially, the examples related to toric surfaces are the first ones.
|
Free Research Field |
代数曲線と代数曲面
|
Academic Significance and Societal Importance of the Research Achievements |
代数曲線(1次元)を調べるために次元を下げて、その上の点(0次元)を調べる。そのためには、点についての情報が必要になり、それが点のワイエルシュトラス半群である。どのようなワイエルシュトラス半群を持つかで代数曲線を特徴づける。また、ワイエルシュトラス半群を点の性質を忘れて拡張した概念が数値半群である。数値半群がワイエルシュトラス半群になることの必要十分条件を見つけることで、1次元の幾何学的性質を特徴づけることができる。これらのことに関して完全に解決はしていないが、多くの研究成果は得ている。 さらに、いくつかの代数曲面(2次元)を調べるためにその上の1点付き代数曲線(1次元)も調べている。
|