• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

Stanley-Reisner イデアルの算術階数とその記号的べきの射影次元

Research Project

Project/Area Number 18K03244
Research InstitutionOkayama University

Principal Investigator

寺井 直樹  岡山大学, 自然科学学域, 教授 (90259862)

Co-Investigator(Kenkyū-buntansha) 木村 杏子  静岡大学, 理学部, 准教授 (60572633)
吉田 健一  日本大学, 文理学部, 教授 (80240802)
宮崎 誓  熊本大学, 大学院先端科学研究部(理), 教授 (90229831)
Project Period (FY) 2018-04-01 – 2024-03-31
Keywordsedge ideal / very well-covered / projective dimension / regularity
Outline of Annual Research Achievements

可換環の極小自由分解の重要な不変量として射影次元やCastelnuovo-Mumford正則度があり、これらの探求は重要な研究課題である。
2022年度発表の研究においては強良被覆グラフの辺イデアルに対してこれらの不変量を局所ホモロジーを用いて分析した。(K.Kimura, M.R Pournaki, N, Terai, N., S.Yassemi: Very well-covered graphs and local cohomology of their residue rings by the edge ideals. Journal of Algebra 606(2022)1-18)。エッジイデアルの高さが丁度、不定元の個数の半分である良被覆グラフは強良被覆グラフと呼ばれている。結果として
M. Mahmoudi, A. Mousivand, M. Crupi, G. Rinaldo, N. Terai, S. Yassemi, Vertex decomposability and regularity of very well-covered graphs, J. Pure Appl. Algebra 215 (10) (2011) 2473-2480.
で与えたCastelnuovo-Mumford正則度を強良被覆グラフのグラフ論的不変量で表す公式や
K. Kimura, N. Terai, S. Yassemi, The projective dimension of the edge ideal of a very well-covered graph, Nagoya Math. J. 230 (2018) 160-179.
で与えた射影次元強良被覆グラフのグラフ論的不変量で表す公式と異なる新たな公式を与えた。

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

2022年度は数学科学科長を務めていたため、多忙で十分な研究時間が確保できなかった。

Strategy for Future Research Activity

本年度発表の研究を一般化して辺重み付き強良被覆グラフの辺イデアルに対して射影次元やCastelnuovo-Mumford正則度を局所ホモロジーを用いて分析したい。

Causes of Carryover

2022年度は数学科学科長を務めていたため、学内業務多忙のため、計画通りに研究が進まず、研究打ち合せのための出張を取りやめたざる得なかったため。

  • Research Products

    (11 results)

All 2022 Other

All Int'l Joint Research (3 results) Journal Article (5 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 5 results) Presentation (3 results) (of which Invited: 2 results)

  • [Int'l Joint Research] University of Tehran/Sharif University of Technology(イラン)

    • Country Name
      IRAN
    • Counterpart Institution
      University of Tehran/Sharif University of Technology
  • [Int'l Joint Research] University of Messina(イタリア)

    • Country Name
      ITALY
    • Counterpart Institution
      University of Messina
  • [Int'l Joint Research] Ovidius University(ルーマニア)

    • Country Name
      ROMANIA
    • Counterpart Institution
      Ovidius University
  • [Journal Article] Simplicial Complexes Satisfying Serre's Condition versus the Ones Which Are Cohen--Macaulay in a Fixed Codimension2022

    • Author(s)
      Pournaki M. R.、Poursoltani M.、Terai N.、Yassemi S.
    • Journal Title

      SIAM Journal on Discrete Mathematics

      Volume: 36 Pages: 2506~2522

    • DOI

      10.1137/21M1439687

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A note on monomial ideals which are Cohen?Macaulay in a fixed codimension2022

    • Author(s)
      Pournaki M. R.、Shibata K.、Terai N.、Yassemi S.
    • Journal Title

      Communications in Algebra

      Volume: 50 Pages: 4988~4996

    • DOI

      10.1080/00927872.2022.2079663

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Sequentially Cohen?Macaulay binomial edge ideals of closed graphs2022

    • Author(s)
      Ene Viviana、Rinaldo Giancarlo、Terai Naoki
    • Journal Title

      Research in the Mathematical Sciences

      Volume: 9 Pages: 17pp

    • DOI

      10.1007/s40687-022-00334-2

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Very well-covered graphs and local cohomology of their residue rings by the edge ideals2022

    • Author(s)
      Kimura K.、Pournaki M.R.、Terai N.、Yassemi S.
    • Journal Title

      Journal of Algebra

      Volume: 606 Pages: 1~18

    • DOI

      10.1016/j.jalgebra.2022.04.021

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A glimpse to most of the old and new results on very well-covered graphs from the viewpoint of commutative algebra2022

    • Author(s)
      Kimura K.、Pournaki M. R.、Seyed Fakhari S. A.、Terai N.、Yassemi S.
    • Journal Title

      Research in the Mathematical Sciences

      Volume: 9 Pages: 18pp

    • DOI

      10.1007/s40687-022-00326-2

    • Peer Reviewed / Int'l Joint Research
  • [Presentation] 余次元の小さいStanley-Reisner環について2022

    • Author(s)
      寺井直樹
    • Organizer
      東京可換セミナー
    • Invited
  • [Presentation] Stanley--Reisner rings with low codimension2022

    • Author(s)
      寺井直樹
    • Organizer
      第43回可換環論シンポジウム
  • [Presentation] The dual modules of the local cohomology of Stanley-Reisner rings with low codimension2022

    • Author(s)
      寺井直樹
    • Organizer
      Algebra & Number Theory Seminar  Institute of Mathematics, Hanoi, Vietnam
    • Invited

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi