• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Representation theory of homotopy algebras and geometry

Research Project

  • PDF
Project/Area Number 18K03293
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionChiba University

Principal Investigator

Kajiura Hiroshige  千葉大学, 大学院理学研究院, 教授 (30447891)

Project Period (FY) 2018-04-01 – 2024-03-31
Keywordsホモトピー代数 / ミラー対称性 / 導来圏
Outline of Final Research Achievements

Homological mirror symmetry conjecture states that the derived category of coherent sheaves on a complex manifold and the derived category of Fukaya category of the mirror dual symplectic manifold are equivalent to each other as triangulated categories. We discuss the case where a complex manifold is a toric manifold and propose a formulation of a version of homological mirror symmetry based on SYZ torus fibrations.
We in particular show explicitly this version of homological mirror symmetry when a toric manifold is a complex projective plane, etc. The derived category of coherent sheaves on a toric manifold is known to have a full exceptional collection, which implies that the derived category is generated by a directed A-infinity category. Thus, our discussions as above are interesting, too, in the sense that we obtain many examples of triangulated categotries generated by directed A-infinity categories from geometry.

Free Research Field

代数的位相幾何学

Academic Significance and Societal Importance of the Research Achievements

ホモロジー的ミラー対称性は,シンプレクティック多様体と複素多様体という異なる2つの幾何の上で定まる三角圏の同値性を主張するものである。この一見異なる幾何学の間に対応があることが興味深く,現在でもホモロジー的ミラー対称性が成り立つような様々な例について議論されている。一方で,なぜそれが成り立つか,という問いに関して決定的な結果は今のところ知られていない.現在この問の解決に一番近いと思われるのがSYZトーラス束によるミラー対の構成に基づく議論であるが,この方向性では解決すべき主張の厳密な証明が難しい状況にある.本研究ではこれを複素側がトーリック多様体に限定した場合に解決する方法を提案している.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi