• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Research-status Report

Constructing geometric representations of finite groups through equivariant topology

Research Project

Project/Area Number 18K03304
Research InstitutionKyushu University

Principal Investigator

鍛冶 静雄  九州大学, マス・フォア・インダストリ研究所, 准教授 (00509656)

Project Period (FY) 2018-04-01 – 2023-03-31
Keywords旗多様体 / 実トーリック多様体 / ワイル群
Outline of Annual Research Achievements

実トーリック多様体はトーリック多様体の実アナロジーであり、mod-2トーラス(2元からなる群の有限個の直積)の良い作用を持つ空間である。その構造はトーリック多様体と同様に、単体複体と特性行列と呼ばれる組み合わせ論的なデータで定まる。本年度は、単体複体上に組み合わせ論的に実現された有限群の作用を実トーリック多様体に持ち上げる構成を考察した。特にワイル群のコクセター複体への作用について具体的に、対応する実トーリック多様体のコホモロジー上に誘導される表現を計算した。副産物として、この対称性を用いることでコホモロジーの計算も簡単になる。このアイデアと計算機を援用することで、例外型リー群 E_7型, E_8型の二つの場合を除いて、ワイル群のコクセター複体に対応する実トーリック多様体のベッチ数を決定することができた。B型, C型ワイル群の場合のベッチ数は、オイラーのジグザグ数とその一般化との関連を見いだした。
また、旗多様体に関する研究も行った。旗多様体の束の塔で表される空間を考察し、その上へのトーラスの作用と、その作用に関する同変コホモロジーを決定した。これは、重要なトーリック多様体である、射影空間の束の塔で表される Bott tower の一般化となっている。Bott tower と同様に、iterated bundle としての構成と、リー群の部分群による商空間としての構成の同値性を示した。さらに、旗多様体のサイクルがベクトル束のゼロ切断として表される条件についても考察を行った。

Current Status of Research Progress
Current Status of Research Progress

1: Research has progressed more than it was originally planned.

Reason

基礎となる実トーリック多様体のコホモロジー上への有限群作用の構成を与えたものを含め、4本の論文を出版することができた。

Strategy for Future Research Activity

個別の有限群について、実トーリック多様体上に表現を構成し、組み合わせ論的に興味深い結果を出したい。
特に対称群を通して、オイラーのジグザグ数列とある実トーリック多様体のコホモロジーとの対応が得られており、コホモロジーの積構造と数列の組み合わせ論の関係を解明したい。

Causes of Carryover

コロナウィルス 蔓延のため、参加予定であった研究集会が複数延期になった。
次年度以降に延期された集会参加のための旅費に充てる。

  • Research Products

    (6 results)

All 2020 2019 Other

All Int'l Joint Research (1 results) Journal Article (4 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 4 results) Remarks (1 results)

  • [Int'l Joint Research] Ajou University(韓国)

    • Country Name
      KOREA (REP. OF KOREA)
    • Counterpart Institution
      Ajou University
  • [Journal Article] Flag Bott manifolds of general Lie type and their equivariant cohomology rings2020

    • Author(s)
      Kaji Shizuo、Kuroki Shintaro、Lee Eunjeong、Suh Dong Youp
    • Journal Title

      Homology, Homotopy and Applications

      Volume: 22 Pages: 375~390

    • DOI

      http://dx.doi.org/10.4310/HHA.2020.v22.n1.a21

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Representing a point and the diagonal as zero loci in flag manifolds2019

    • Author(s)
      Kaji Shizuo
    • Journal Title

      Algebraic & Geometric Topology

      Volume: 19 Pages: 2061~2075

    • DOI

      https://doi.org/10.2140/agt.2019.19.2061

    • Peer Reviewed
  • [Journal Article] The Cohomology Groups of Real Toric Varieties Associated with Weyl Chambers of Types C and D2019

    • Author(s)
      Choi Suyoung、Kaji Shizuo、Park Hanchul
    • Journal Title

      Proceedings of the Edinburgh Mathematical Society

      Volume: 62 Pages: 861~874

    • DOI

      https://doi.org/10.1017/S001309151800086X

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Geometric representations of finite groups on real toric spaces2019

    • Author(s)
      Soojin Cho, Suyoung Choi, and Shizuo Kaji
    • Journal Title

      J. Korean Math. Soc.

      Volume: 56-5 Pages: 1265-1283

    • DOI

      https://doi.org/10.4134/JKMS.j180646

    • Peer Reviewed / Int'l Joint Research
  • [Remarks] Shizuo KAJI's web page

    • URL

      https://www.skaji.org/

URL: 

Published: 2021-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi