• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

Wirtingerの不等式の変種とその応用

Research Project

Project/Area Number 18K03305
Research InstitutionKagoshima University

Principal Investigator

近藤 剛史  鹿児島大学, 理工学域理学系, 准教授 (60467446)

Project Period (FY) 2018-04-01 – 2024-03-31
KeywordsWirtingerの不等式 / コクセター群 / 非線形スペクトルギャップ / ケイリーグラフ / 退化軌道 / 軌道多面体 / 高次元正多面体
Outline of Annual Research Achievements

Gromovによって示されたWirtingerの不等式を用いることで, CAT(0)空間への写像に対する非線形スペクトルギャップがサイクルの場合には線形のスペクトルギャップと等しくなることがPansuによって証明されていた. この話をサイクル以外の有限グラフ, 特にコクセター群のケイリーグラフの場合に拡張できるかというのが, 本研究の問題意識であった.
昨年度までに既約な有限コクセター群のケイリーグラフに対する非線形スペクトルギャップは計算できており, 本年度は, 有限コクセター群に対するWirtingerの不等式の変種を, 一般の軌道多面体の1スケルトンに拡張し, これを用いて軌道多面体の非線形スペクトルギャップの計算を行った. これらの計算は3次元のアルキメデス多面体のほとんどや, 高次元正多面体, ゴセット多面体等の, コクセター群の退化した軌道の凸包として捉えられる多面体に対する非線形スペクトルギャップの計算を体系的に行ったことになっており, 線形の場合にも新しい計算になっているものと思われる. この計算により, 高次元も含めた全ての正多面体において, 非線形スペクトルギャップが線形の場合に一致することもわかる.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

コクセター群のケイリーグラフだけでなく,
軌道多面体の1スケルトンとして現れるグラフの非線形スペクトルギャップも計算できたため.

Strategy for Future Research Activity

これまでに得られた非線形スペクトルギャップの計算を論文にまとめる.
また, 証明をさらに検討して, このような計算を可能にしている根本的理由は何かを探る.

Causes of Carryover

予定していた出張を行うことができず, 旅費が余ったため. 次年度は出張が可能となりそうなので旅費に充てる予定である.

  • Research Products

    (2 results)

All 2023 2022

All Presentation (2 results) (of which Invited: 2 results)

  • [Presentation] Wirtinger の不等式と CAT(0) 空間ターゲットの distortion2023

    • Author(s)
      近藤剛史
    • Organizer
      測地線及び関連する諸問題
    • Invited
  • [Presentation] Wirtinger の不等式の変種とその応用2022

    • Author(s)
      近藤剛史
    • Organizer
      福岡大学微分幾何研究集会2022
    • Invited

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi